BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 23652565)

  • 1. The genetic basis of speciation in the Giliopsis lineage of Ipomopsis (Polemoniaceae).
    Nakazato T; Rieseberg LH; Wood TE
    Heredity (Edinb); 2013 Sep; 111(3):227-37. PubMed ID: 23652565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic Mapping Reveals an Anthocyanin Biosynthesis Pathway Gene Potentially Influencing Evolutionary Divergence between Two Subspecies of Scarlet Gilia (Ipomopsis aggregata).
    Campitelli BE; Kenney AM; Hopkins R; Soule J; Lovell JT; Juenger TE
    Mol Biol Evol; 2018 Apr; 35(4):807-822. PubMed ID: 29253197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive differentiation in floral traits in the presence of high gene flow in scarlet gilia (Ipomopsis aggregata).
    Milano ER; Kenney AM; Juenger TE
    Mol Ecol; 2016 Dec; 25(23):5862-5875. PubMed ID: 27392816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complex interactions underlie the correlated evolution of floral traits and their association with pollinators in a clade with diverse pollination systems.
    Rose JP; Sytsma KJ
    Evolution; 2021 Jun; 75(6):1431-1449. PubMed ID: 33818785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Minor quantitative trait loci underlie floral traits associated with mating system divergence in Mimulus.
    Fishman L; Kelly AJ; Willis JH
    Evolution; 2002 Nov; 56(11):2138-55. PubMed ID: 12487345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Context-dependent reproductive isolation mediated by floral scent and color.
    Bischoff M; Raguso RA; Jürgens A; Campbell DR
    Evolution; 2015 Jan; 69(1):1-13. PubMed ID: 25354994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The genetic architecture of traits associated with the evolution of self-pollination in Mimulus.
    Fishman L; Beardsley PM; Stathos A; Williams CF; Hill JP
    New Phytol; 2015 Jan; 205(2):907-17. PubMed ID: 25306861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pleiotropy and the evolution of floral integration.
    Smith SD
    New Phytol; 2016 Jan; 209(1):80-5. PubMed ID: 26224529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The genetics of reproductive organ morphology in two Petunia species with contrasting pollination syndromes.
    Hermann K; Klahre U; Venail J; Brandenburg A; Kuhlemeier C
    Planta; 2015 May; 241(5):1241-54. PubMed ID: 25656052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pollinator behaviour and plant speciation: can assortative mating and disruptive selection maintain distinct floral morphs in sympatry?
    Rymer PD; Johnson SD; Savolainen V
    New Phytol; 2010 Oct; 188(2):426-36. PubMed ID: 20738786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gain and Loss of Floral Scent Production through Changes in Structural Genes during Pollinator-Mediated Speciation.
    Amrad A; Moser M; Mandel T; de Vries M; Schuurink RC; Freitas L; Kuhlemeier C
    Curr Biol; 2016 Dec; 26(24):3303-3312. PubMed ID: 27916524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple genetic architecture and low constraint allow rapid floral evolution in a diverse and recently radiating plant genus.
    Kostyun JL; Gibson MJS; King CM; Moyle LC
    New Phytol; 2019 Jul; 223(2):1009-1022. PubMed ID: 30972773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal stability of pollinator preference in an alpine plant community and its implications for the evolution of floral traits.
    Gong YB; Huang SQ
    Oecologia; 2011 Jul; 166(3):671-80. PubMed ID: 21253770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pollinator choice in Petunia depends on two major genetic Loci for floral scent production.
    Klahre U; Gurba A; Hermann K; Saxenhofer M; Bossolini E; Guerin PM; Kuhlemeier C
    Curr Biol; 2011 May; 21(9):730-9. PubMed ID: 21497087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The genetic control of flower-pollinator specificity.
    Yuan YW; Byers KJ; Bradshaw HD
    Curr Opin Plant Biol; 2013 Aug; 16(4):422-8. PubMed ID: 23763819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pollinator and habitat-mediated selection as potential contributors to ecological speciation in two closely related species.
    Campbell DR; Powers JM; Crowell M
    Evol Lett; 2024 Apr; 8(2):311-321. PubMed ID: 38525033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantitative review of pollination syndromes: do floral traits predict effective pollinators?
    Rosas-Guerrero V; Aguilar R; Martén-Rodríguez S; Ashworth L; Lopezaraiza-Mikel M; Bastida JM; Quesada M
    Ecol Lett; 2014 Mar; 17(3):388-400. PubMed ID: 24393294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mimicry on the QT(L): genetics of speciation in Mimulus.
    Bleiweiss R
    Evolution; 2001 Aug; 55(8):1706-9. PubMed ID: 11580030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting canalization and intra-floral modularity in triggerplant (Stylidium) flowers: correlations are only part of the story.
    Armbruster WS; Wege JA
    Ann Bot; 2019 Jan; 123(2):355-372. PubMed ID: 30383191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ecology and evolution of floral volatile-mediated information transfer in plants.
    Schiestl FP
    New Phytol; 2015 Apr; 206(2):571-7. PubMed ID: 25605223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.