BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 23652645)

  • 1. Plasmon based biosensor for distinguishing different peptides mutation states.
    Das G; Chirumamilla M; Toma A; Gopalakrishnan A; Zaccaria RP; Alabastri A; Leoncini M; Di Fabrizio E
    Sci Rep; 2013; 3():1792. PubMed ID: 23652645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of localized surface plasmon resonance of nanostructured Au patterns for biosensing.
    Yu JS; Kim M; Kim S; Ha DH; Chung BH; Chung SJ; Yu JS
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4548-52. PubMed ID: 19049055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of gold nanocrescents by angle deposition with nanosphere lithography for localized surface plasmon resonance applications.
    Zhou X; Virasawmy S; Knoll W; Liu KY; Tse MS; Yen LW
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3369-78. PubMed ID: 19051882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical and optical biosensors based on nanomaterials and nanostructures: a review.
    Li M; Li R; Li CM; Wu N
    Front Biosci (Schol Ed); 2011 Jun; 3(4):1308-31. PubMed ID: 21622273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrothermally roughened surface-enhanced Raman scattering-active substrates with low background signals for chemical sensing application.
    Yang JY; Cheng HW; Chen Y; Li Y; Lin CH; Lu KL
    J Nanosci Nanotechnol; 2011 Mar; 11(3):2012-7. PubMed ID: 21449341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lithography-Free Fabrication of Silica Nanocylinders with Suspended Gold Nanorings for LSPR-Based Sensing.
    Thilsted AH; Pan JY; Wu K; Zór K; Rindzevicius T; Schmidt MS; Boisen A
    Small; 2016 Dec; 12(48):6745-6752. PubMed ID: 27709773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fiber-cap biosensors for SERS analysis of liquid samples.
    Credi C; Bibikova O; Dallari C; Tiribilli B; Ratto F; Centi S; Pini R; Artyushenko V; Cicchi R; Pavone FS
    J Mater Chem B; 2020 Feb; 8(8):1629-1639. PubMed ID: 32011615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gap structure effects on surface-enhanced Raman scattering intensities for gold gapped rods.
    Li S; Pedano ML; Chang SH; Mirkin CA; Schatz GC
    Nano Lett; 2010 May; 10(5):1722-7. PubMed ID: 20356055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Sensitive Assay of Nucleic Acid Using Tetrahedral DNA Probes and DNA Concatamers with a Surface-Enhanced Raman Scattering/Surface Plasmon Resonance Dual-Mode Biosensor Based on a Silver Nanorod-Covered Silver Nanohole Array.
    Song C; Jiang X; Yang Y; Zhang J; Larson S; Zhao Y; Wang L
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):31242-31254. PubMed ID: 32608960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of the resolution of surface plasmon resonance biosensors by control of the size and distribution of nanoparticles.
    Chen SJ; Chien FC; Lin GY; Lee KC
    Opt Lett; 2004 Jun; 29(12):1390-2. PubMed ID: 15233445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmission surface plasmon resonance techniques and their potential biosensor applications.
    Lertvachirapaiboon C; Baba A; Ekgasit S; Shinbo K; Kato K; Kaneko F
    Biosens Bioelectron; 2018 Jan; 99():399-415. PubMed ID: 28806670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All-thermoplastic nanoplasmonic microfluidic device for transmission SPR biosensing.
    Malic L; Morton K; Clime L; Veres T
    Lab Chip; 2013 Mar; 13(5):798-810. PubMed ID: 23287840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies for Surface Design in Surface Plasmon Resonance (SPR) Sensing.
    Topor CV; Puiu M; Bala C
    Biosensors (Basel); 2023 Apr; 13(4):. PubMed ID: 37185540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanogold-plasmon-resonance-based glucose sensing.
    Aslan K; Lakowicz JR; Geddes CD
    Anal Biochem; 2004 Jul; 330(1):145-55. PubMed ID: 15183773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GLAD Based Advanced Nanostructures for Diversified Biosensing Applications: Recent Progress.
    Yadav S; Senapati S; Kumar S; Gahlaut SK; Singh JP
    Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of large-area ordered and reproducible nanostructures for SERS biosensor application.
    Das G; Patra N; Gopalakrishnan A; Zaccaria RP; Toma A; Thorat S; Di Fabrizio E; Diaspro A; Salerno M
    Analyst; 2012 Apr; 137(8):1785-92. PubMed ID: 22354094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bottom-Up Fabrication of Plasmonic Nanoantenna-Based High-throughput Multiplexing Biosensors for Ultrasensitive Detection of microRNAs Directly from Cancer Patients' Plasma.
    Masterson AN; Liyanage T; Kaimakliotis H; Gholami Derami H; Deiss F; Sardar R
    Anal Chem; 2020 Jul; 92(13):9295-9304. PubMed ID: 32469524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitive biosensors using Fano resonance in single gold nanoslit with periodic grooves.
    Lee KL; Wu SH; Lee CW; Wei PK
    Opt Express; 2011 Nov; 19(24):24530-9. PubMed ID: 22109480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid modes in gold nanoslit arrays on Bragg nanostructures and their application for sensitive biosensors.
    Lo SC; Lee CW; Chern RL; Wei PK
    Opt Express; 2022 Aug; 30(17):30494-30506. PubMed ID: 36242152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires.
    Byun KM; Yoon SJ; Kim D; Kim SJ
    Opt Lett; 2007 Jul; 32(13):1902-4. PubMed ID: 17603608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.