BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 23652785)

  • 21. Modified nanoprecipitation method to fabricate DNA-loaded PLGA nanoparticles.
    Niu X; Zou W; Liu C; Zhang N; Fu C
    Drug Dev Ind Pharm; 2009 Nov; 35(11):1375-83. PubMed ID: 19832638
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Poly[lactic-co-(glycolic acid)]-grafted hyaluronic acid copolymer micelle nanoparticles for target-specific delivery of doxorubicin.
    Lee H; Ahn CH; Park TG
    Macromol Biosci; 2009 Apr; 9(4):336-42. PubMed ID: 19006195
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanoparticles of lipid monolayer shell and biodegradable polymer core for controlled release of paclitaxel: effects of surfactants on particles size, characteristics and in vitro performance.
    Liu Y; Pan J; Feng SS
    Int J Pharm; 2010 Aug; 395(1-2):243-50. PubMed ID: 20472049
    [TBL] [Abstract][Full Text] [Related]  

  • 24. One-step preparation of rifampicin/poly(lactic-co-glycolic acid) nanoparticle-containing mannitol microspheres using a four-fluid nozzle spray drier for inhalation therapy of tuberculosis.
    Ohashi K; Kabasawa T; Ozeki T; Okada H
    J Control Release; 2009 Apr; 135(1):19-24. PubMed ID: 19121349
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro study of anticancer drug doxorubicin in PLGA-based microparticles.
    Lin R; Shi Ng L; Wang CH
    Biomaterials; 2005 Jul; 26(21):4476-85. PubMed ID: 15701377
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced properties of discrete pulmonary deoxyribonuclease I (DNaseI) loaded PLGA nanoparticles during encapsulation and activity determination.
    Osman R; Kan PL; Awad G; Mortada N; El-Shamy AE; Alpar O
    Int J Pharm; 2011 Apr; 408(1-2):257-65. PubMed ID: 21335080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Radiosensitization of paclitaxel, etanidazole and paclitaxel+etanidazole nanoparticles on hypoxic human tumor cells in vitro.
    Jin C; Bai L; Wu H; Tian F; Guo G
    Biomaterials; 2007 Sep; 28(25):3724-30. PubMed ID: 17509678
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monocyte cell membrane-derived nanoghosts for targeted cancer therapy.
    Krishnamurthy S; Gnanasammandhan MK; Xie C; Huang K; Cui MY; Chan JM
    Nanoscale; 2016 Apr; 8(13):6981-5. PubMed ID: 26975904
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preparation and characterization of a polymeric (PLGA) nanoparticulate drug delivery system with simultaneous incorporation of chemotherapeutic and thermo-optical agents.
    Manchanda R; Fernandez-Fernandez A; Nagesetti A; McGoron AJ
    Colloids Surf B Biointerfaces; 2010 Jan; 75(1):260-7. PubMed ID: 19775872
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chitosan-modified poly(D,L-lactide-co-glycolide) nanospheres for plasmid DNA delivery and HBV gene-silencing.
    Zeng P; Xu Y; Zeng C; Ren H; Peng M
    Int J Pharm; 2011 Aug; 415(1-2):259-66. PubMed ID: 21645597
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Purely aqueous PLGA nanoparticulate formulations of curcumin exhibit enhanced anticancer activity with dependence on the combination of the carrier.
    Nair KL; Thulasidasan AK; Deepa G; Anto RJ; Kumar GS
    Int J Pharm; 2012 Apr; 425(1-2):44-52. PubMed ID: 22266528
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chitosan-coated PLGA nanoparticles for DNA/RNA delivery: effect of the formulation parameters on complexation and transfection of antisense oligonucleotides.
    Nafee N; Taetz S; Schneider M; Schaefer UF; Lehr CM
    Nanomedicine; 2007 Sep; 3(3):173-83. PubMed ID: 17692575
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel hybrid delivery system: polymer-oil nanostructured carrier for controlled delivery of highly lipophilic drug all-trans-retinoic acid (ATRA).
    Narvekar M; Xue HY; Wong HL
    Int J Pharm; 2012 Oct; 436(1-2):721-31. PubMed ID: 22850294
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro targeted imaging and delivery of camptothecin using cetuximab-conjugated multifunctional PLGA-ZnS nanoparticles.
    Deepagan VG; Sarmento B; Menon D; Nascimento A; Jayasree A; Sreeranganathan M; Koyakutty M; Nair SV; Rangasamy J
    Nanomedicine (Lond); 2012 Apr; 7(4):507-19. PubMed ID: 22471719
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development and characterization of poly(lactic-co-glycolic) acid nanoparticles loaded with copaiba oleoresin.
    de Almeida Borges VR; Tavares MR; da Silva JH; Tajber L; Boylan F; Ribeiro AF; Nasciutti LE; Cabral LM; de Sousa VP
    Pharm Dev Technol; 2018 Apr; 23(4):343-350. PubMed ID: 28145793
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design and optimization of NSAID loaded nanoparticles.
    Sashmal S; Mukherjee S; Ray S; Thakur RS; Ghosh LK; Gupta BK
    Pak J Pharm Sci; 2007 Apr; 20(2):157-62. PubMed ID: 17416573
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glucosylated polymeric nanoparticles: a sweetened approach against blood compatibility paradox.
    Thasneem YM; Sajeesh S; Sharma CP
    Colloids Surf B Biointerfaces; 2013 Aug; 108():337-44. PubMed ID: 23563302
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs.
    Win KY; Feng SS
    Biomaterials; 2005 May; 26(15):2713-22. PubMed ID: 15585275
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Single-step process to produce surface-functionalized polymeric nanoparticles.
    Sussman EM; Clarke MB; Shastri VP
    Langmuir; 2007 Nov; 23(24):12275-9. PubMed ID: 17963413
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Real-time visualization of pH-responsive PLGA hollow particles containing a gas-generating agent targeted for acidic organelles for overcoming multi-drug resistance.
    Ke CJ; Chiang WL; Liao ZX; Chen HL; Lai PS; Sun JS; Sung HW
    Biomaterials; 2013 Jan; 34(1):1-10. PubMed ID: 23044041
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.