These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 23652998)
1. Genetic manipulation, a feasible tool to enhance unique characteristic of Chlorella vulgaris as a feedstock for biodiesel production. Talebi AF; Tohidfar M; Tabatabaei M; Bagheri A; Mohsenpor M; Mohtashami SK Mol Biol Rep; 2013 Jul; 40(7):4421-8. PubMed ID: 23652998 [TBL] [Abstract][Full Text] [Related]
2. Biodiesel production from hydrolysate of Cyperus esculentus waste by Chlorella vulgaris. Wang W; Zhou W; Liu J; Li Y; Zhang Y Bioresour Technol; 2013 May; 136():24-9. PubMed ID: 23548401 [TBL] [Abstract][Full Text] [Related]
3. Outdoor cultivation of the green microalga Chlorella vulgaris under stress conditions as a feedstock for biofuel. El-Sheekh MM; Gheda SF; El-Sayed AEB; Abo Shady AM; El-Sheikh ME; Schagerl M Environ Sci Pollut Res Int; 2019 Jun; 26(18):18520-18532. PubMed ID: 31049862 [TBL] [Abstract][Full Text] [Related]
4. Chlorella vulgaris genome assembly and annotation reveals the molecular basis for metabolic acclimation to high light conditions. Cecchin M; Marcolungo L; Rossato M; Girolomoni L; Cosentino E; Cuine S; Li-Beisson Y; Delledonne M; Ballottari M Plant J; 2019 Dec; 100(6):1289-1305. PubMed ID: 31437318 [TBL] [Abstract][Full Text] [Related]
5. Maximization of cell growth and lipid production of freshwater microalga Chlorella vulgaris by enrichment technique for biodiesel production. Wong YK; Ho YH; Ho KC; Leung HM; Yung KK Environ Sci Pollut Res Int; 2017 Apr; 24(10):9089-9101. PubMed ID: 27975198 [TBL] [Abstract][Full Text] [Related]
6. Exploration of upstream and downstream process for microwave assisted sustainable biodiesel production from microalgae Chlorella vulgaris. Sharma AK; Sahoo PK; Singhal S; Joshi G Bioresour Technol; 2016 Sep; 216():793-800. PubMed ID: 27318156 [TBL] [Abstract][Full Text] [Related]
7. Development of CRISPR/Cas9 system in Chlorella vulgaris FSP-E to enhance lipid accumulation. Lin WR; Ng IS Enzyme Microb Technol; 2020 Feb; 133():109458. PubMed ID: 31874693 [TBL] [Abstract][Full Text] [Related]
8. Maximizing Biomass and Lipid Production in Heterotrophic Culture of Chlorella vulgaris: Techno-Economic Assessment. Morowvat MH; Ghasemi Y Recent Pat Food Nutr Agric; 2019; 10(2):115-123. PubMed ID: 30205808 [TBL] [Abstract][Full Text] [Related]
9. Cell Growth, Lipid Production and Productivity in Photosynthetic Microalga Chlorella vulgaris under Different Nitrogen Concentrations and Culture Media Replacement. Morowvat MH; Ghasemi Y Recent Pat Food Nutr Agric; 2018; 9(2):142-151. PubMed ID: 29886843 [TBL] [Abstract][Full Text] [Related]
10. Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition. Adamakis ID; Lazaridis PA; Terzopoulou E; Torofias S; Valari M; Kalaitzi P; Rousonikolos V; Gkoutzikostas D; Zouboulis A; Zalidis G; Triantafyllidis KS Environ Sci Pollut Res Int; 2018 Aug; 25(23):23018-23032. PubMed ID: 29859001 [TBL] [Abstract][Full Text] [Related]
11. Rapid induction of lipid droplets in Chlamydomonas reinhardtii and Chlorella vulgaris by Brefeldin A. Kim S; Kim H; Ko D; Yamaoka Y; Otsuru M; Kawai-Yamada M; Ishikawa T; Oh HM; Nishida I; Li-Beisson Y; Lee Y PLoS One; 2013; 8(12):e81978. PubMed ID: 24349166 [TBL] [Abstract][Full Text] [Related]
12. Chlorella vulgaris as a green biofuel factory: Comparison between biodiesel, biogas and combustible biomass production. Sakarika M; Kornaros M Bioresour Technol; 2019 Feb; 273():237-243. PubMed ID: 30447625 [TBL] [Abstract][Full Text] [Related]
13. Augmenting the expression of accD and rbcL genes using optimized iron concentration to achieve higher biomass and biodiesel in Chlorella vulgaris. Khamoushi A; Tafakori V; Zahed MA; Gayglou SE; Angaji SA Biotechnol Lett; 2020 Dec; 42(12):2631-2641. PubMed ID: 32720070 [TBL] [Abstract][Full Text] [Related]
14. Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency. Chu FF; Chu PN; Cai PJ; Li WW; Lam PK; Zeng RJ Bioresour Technol; 2013 Apr; 134():341-6. PubMed ID: 23517904 [TBL] [Abstract][Full Text] [Related]
15. Assessment of factors affecting Agrobacterium-mediated genetic transformation of the unicellular green alga, Chlorella vulgaris. Cha TS; Yee W; Aziz A World J Microbiol Biotechnol; 2012 Apr; 28(4):1771-9. PubMed ID: 22805959 [TBL] [Abstract][Full Text] [Related]
16. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Liu ZY; Wang GC; Zhou BC Bioresour Technol; 2008 Jul; 99(11):4717-22. PubMed ID: 17993270 [TBL] [Abstract][Full Text] [Related]
17. Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production. Gerken HG; Donohoe B; Knoshaug EP Planta; 2013 Jan; 237(1):239-53. PubMed ID: 23011569 [TBL] [Abstract][Full Text] [Related]
18. Effects of sodium bicarbonate on cell growth, lipid accumulation, and morphology of Chlorella vulgaris. Li J; Li C; Lan CQ; Liao D Microb Cell Fact; 2018 Jul; 17(1):111. PubMed ID: 29986703 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of Thirty Microalgal Isolates as Biodiesel Feedstocks Based on Lipid Productivity and Triacylglycerol (TAG) Content. Andeden EE; Ozturk S; Aslim B Curr Microbiol; 2021 Feb; 78(2):775-788. PubMed ID: 33475780 [TBL] [Abstract][Full Text] [Related]
20. Cell density, Lipidomic profile, and fatty acid characterization as selection criteria in bioprospecting of microalgae and cyanobacterium for biodiesel production. Shanmugam S; Mathimani T; Anto S; Sudhakar MP; Kumar SS; Pugazhendhi A Bioresour Technol; 2020 May; 304():123061. PubMed ID: 32127245 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]