These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 23653393)
41. Channel Gating Regulation by the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) First Cytosolic Loop. Ehrhardt A; Chung WJ; Pyle LC; Wang W; Nowotarski K; Mulvihill CM; Ramjeesingh M; Hong J; Velu SE; Lewis HA; Atwell S; Aller S; Bear CE; Lukacs GL; Kirk KL; Sorscher EJ J Biol Chem; 2016 Jan; 291(4):1854-1865. PubMed ID: 26627831 [TBL] [Abstract][Full Text] [Related]
42. Differential thermostability and response to cystic fibrosis transmembrane conductance regulator potentiators of human and mouse F508del-CFTR. Bose SJ; Bijvelds MJC; Wang Y; Liu J; Cai Z; Bot AGM; de Jonge HR; Sheppard DN Am J Physiol Lung Cell Mol Physiol; 2019 Jul; 317(1):L71-L86. PubMed ID: 30969810 [TBL] [Abstract][Full Text] [Related]
43. Therapeutic approaches to CFTR dysfunction: From discovery to drug development. Li H; Pesce E; Sheppard DN; Singh AK; Pedemonte N J Cyst Fibros; 2018 Mar; 17(2S):S14-S21. PubMed ID: 28916430 [TBL] [Abstract][Full Text] [Related]
44. Identification of resveratrol oligomers as inhibitors of cystic fibrosis transmembrane conductance regulator by high-throughput screening of natural products from chinese medicinal plants. Zhang Y; Yu B; Sui Y; Gao X; Yang H; Ma T PLoS One; 2014; 9(4):e94302. PubMed ID: 24714160 [TBL] [Abstract][Full Text] [Related]
46. Recent Progress in the Discovery and Development of Small-Molecule Modulators of CFTR. Kym PR; Wang X; Pizzonero M; Van der Plas SE Prog Med Chem; 2018; 57(1):235-276. PubMed ID: 29680149 [TBL] [Abstract][Full Text] [Related]
47. Functional cystic fibrosis transmembrane conductance regulator tagged with an epitope of the vesicular stomatis virus glycoprotein can be addressed to the apical domain of polarized cells. Costa de Beauregard MA; Edelman A; Chesnoy-Marchais D; Tondelier D; Lapillonne A; El Marjou F; Robine S; Louvard D Eur J Cell Biol; 2000 Nov; 79(11):795-802. PubMed ID: 11139142 [TBL] [Abstract][Full Text] [Related]
48. A Proteomic Survey of the Cystic Fibrosis Transmembrane Conductance Regulator Surfaceome. Iazzi M; Sadeghi S; Gupta GD Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511222 [TBL] [Abstract][Full Text] [Related]
49. Identification of synergistic combinations of F508del cystic fibrosis transmembrane conductance regulator (CFTR) modulators. Lin S; Sui J; Cotard S; Fung B; Andersen J; Zhu P; El Messadi N; Lehar J; Lee M; Staunton J Assay Drug Dev Technol; 2010 Dec; 8(6):669-84. PubMed ID: 21050065 [TBL] [Abstract][Full Text] [Related]
50. Human amnion epithelial cells induced to express functional cystic fibrosis transmembrane conductance regulator. Murphy SV; Lim R; Heraud P; Cholewa M; Le Gros M; de Jonge MD; Howard DL; Paterson D; McDonald C; Atala A; Jenkin G; Wallace EM PLoS One; 2012; 7(9):e46533. PubMed ID: 23029546 [TBL] [Abstract][Full Text] [Related]
51. Molecular mechanisms of cystic fibrosis - how mutations lead to misfunction and guide therapy. Farinha CM; Callebaut I Biosci Rep; 2022 Jul; 42(7):. PubMed ID: 35707985 [TBL] [Abstract][Full Text] [Related]
52. Direct block of the cystic fibrosis transmembrane conductance regulator Cl(-) channel by niflumic acid. Scott-Ward TS; Li H; Schmidt A; Cai Z; Sheppard DN Mol Membr Biol; 2004; 21(1):27-38. PubMed ID: 14668136 [TBL] [Abstract][Full Text] [Related]
53. Direct sensing of intracellular pH by the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. Chen JH; Cai Z; Sheppard DN J Biol Chem; 2009 Dec; 284(51):35495-506. PubMed ID: 19837660 [TBL] [Abstract][Full Text] [Related]
54. Mechanosensitivity of wild-type and G551D cystic fibrosis transmembrane conductance regulator (CFTR) controls regulatory volume decrease in simple epithelia. Xie C; Cao X; Chen X; Wang D; Zhang WK; Sun Y; Hu W; Zhou Z; Wang Y; Huang P FASEB J; 2016 Apr; 30(4):1579-89. PubMed ID: 26683699 [TBL] [Abstract][Full Text] [Related]
55. Targeted proteomic quantitation of the absolute expression and turnover of cystic fibrosis transmembrane conductance regulator in the apical plasma membrane. McShane AJ; Bajrami B; Ramos AA; Diego-Limpin PA; Farrokhi V; Coutermarsh BA; Stanton BA; Jensen T; Riordan JR; Wetmore D; Joseloff E; Yao X J Proteome Res; 2014 Nov; 13(11):4676-85. PubMed ID: 25227318 [TBL] [Abstract][Full Text] [Related]
56. Current development of CFTR potentiators in the last decade. Spanò V; Venturini A; Genovese M; Barreca M; Raimondi MV; Montalbano A; Galietta LJV; Barraja P Eur J Med Chem; 2020 Oct; 204():112631. PubMed ID: 32898816 [TBL] [Abstract][Full Text] [Related]
57. The cystic fibrosis transmembrane conductance regulator is an extracellular chloride sensor. Broadbent SD; Ramjeesingh M; Bear CE; Argent BE; Linsdell P; Gray MA Pflugers Arch; 2015 Aug; 467(8):1783-94. PubMed ID: 25277268 [TBL] [Abstract][Full Text] [Related]
58. Rab11b regulates the apical recycling of the cystic fibrosis transmembrane conductance regulator in polarized intestinal epithelial cells. Silvis MR; Bertrand CA; Ameen N; Golin-Bisello F; Butterworth MB; Frizzell RA; Bradbury NA Mol Biol Cell; 2009 Apr; 20(8):2337-50. PubMed ID: 19244346 [TBL] [Abstract][Full Text] [Related]
59. Repairing mutated proteins--development of small molecules targeting defects in the cystic fibrosis transmembrane conductance regulator. Merk D; Schubert-Zsilavecz M Expert Opin Drug Discov; 2013 Jun; 8(6):691-708. PubMed ID: 23574506 [TBL] [Abstract][Full Text] [Related]
60. Annexin A5 increases the cell surface expression and the chloride channel function of the DeltaF508-cystic fibrosis transmembrane regulator. Le Drévo MA; Benz N; Kerbiriou M; Giroux-Metges MA; Pennec JP; Trouvé P; Férec C Biochim Biophys Acta; 2008 Oct; 1782(10):605-14. PubMed ID: 18773956 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]