These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 23653406)

  • 1. Synergistic effect of SnO2/ZnWO4 core-shell nanorods with high reversible lithium storage capacity.
    Xing LL; Yuan S; He B; Zhao YY; Wu XL; Xue XY
    Chem Asian J; 2013 Jul; 8(7):1530-5. PubMed ID: 23653406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Core-shell α-Fe₂O₃@α-MoO₃ nanorods as lithium-ion battery anodes with extremely high capacity and cyclability.
    Wang Q; Wang Q; Zhang DA; Sun J; Xing LL; Xue XY
    Chem Asian J; 2014 Nov; 9(11):3299-306. PubMed ID: 25169204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SnO2/WO3 core-shell nanorods and their high reversible capacity as lithium-ion battery anodes.
    Xue XY; He B; Yuan S; Xing LL; Chen ZH; Ma CH
    Nanotechnology; 2011 Sep; 22(39):395702. PubMed ID: 21891841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hollow Core-Shell SnO2/C Fibers as Highly Stable Anodes for Lithium-Ion Batteries.
    Zhou D; Song WL; Fan LZ
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21472-8. PubMed ID: 26348195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A SnO2@carbon nanocluster anode material with superior cyclability and rate capability for lithium-ion batteries.
    He M; Yuan L; Hu X; Zhang W; Shu J; Huang Y
    Nanoscale; 2013 Apr; 5(8):3298-305. PubMed ID: 23483088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constructing Novel Si@SnO2 Core-Shell Heterostructures by Facile Self-Assembly of SnO2 Nanowires on Silicon Hollow Nanospheres for Large, Reversible Lithium Storage.
    Zhou ZW; Liu YT; Xie XM; Ye XY
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):7092-100. PubMed ID: 26927734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core-shell NiFe2O4@TiO2 nanorods: an anode material with enhanced electrochemical performance for lithium-ion batteries.
    Huang G; Zhang F; Du X; Wang J; Yin D; Wang L
    Chemistry; 2014 Aug; 20(35):11214-9. PubMed ID: 25044261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 1D ultrafine SnO
    Wang Y; Jin Y; Zhao C; Pan E; Jia M
    J Colloid Interface Sci; 2018 Dec; 532():352-362. PubMed ID: 30096529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Layer-by-layer synthesis of γ-Fe2O3@SnO2@C porous core-shell nanorods with high reversible capacity in lithium-ion batteries.
    Du N; Chen Y; Zhai C; Zhang H; Yang D
    Nanoscale; 2013 Jun; 5(11):4744-50. PubMed ID: 23599163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of core/shell ZnWO4/carbon nanorods and their Li electroactivity.
    Shim HW; Lim AH; Lee GH; Jung HC; Kim DW
    Nanoscale Res Lett; 2012 Jan; 7(1):9. PubMed ID: 22221563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SnO
    Zhang F; Yang C; Gao X; Chen S; Hu Y; Guan H; Ma Y; Zhang J; Zhou H; Qi L
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):9620-9629. PubMed ID: 28248075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SnO2/α-MoO3 core-shell nanobelts and their extraordinarily high reversible capacity as lithium-ion battery anodes.
    Xue XY; Chen ZH; Xing LL; Yuan S; Chen YJ
    Chem Commun (Camb); 2011 May; 47(18):5205-7. PubMed ID: 21412547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous SnO2-Fe2O3 nanocubes with improved electrochemical performance for lithium ion batteries.
    Yan Y; Du F; Shen X; Ji Z; Zhou H; Zhu G
    Dalton Trans; 2014 Dec; 43(46):17544-50. PubMed ID: 25347762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional SnO₂@TiO₂ double-shell nanotubes on carbon cloth as a flexible anode for lithium-ion batteries.
    Zhang H; Ren W; Cheng C
    Nanotechnology; 2015 Jul; 26(27):274002. PubMed ID: 26082042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile synthesis of loaf-like ZnMn₂O₄ nanorods and their excellent performance in Li-ion batteries.
    Bai Z; Fan N; Sun C; Ju Z; Guo C; Yang J; Qian Y
    Nanoscale; 2013 Mar; 5(6):2442-7. PubMed ID: 23403451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tin dioxide@carbon core-shell nanoarchitectures anchored on wrinkled graphene for ultrafast and stable lithium storage.
    Zhou X; Liu W; Yu X; Liu Y; Fang Y; Klankowski S; Yang Y; Brown JE; Li J
    ACS Appl Mater Interfaces; 2014 May; 6(10):7434-43. PubMed ID: 24784816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing the Lithium Storage Performance of Graphene/SnO
    Liu X; Ma T; Sun L; Xu Y; Zhang J; Pinna N
    ChemSusChem; 2018 Apr; 11(8):1321-1327. PubMed ID: 29498221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneous Double-Shelled Constructed Fe
    Zhao R; Shen X; Wu Q; Zhang X; Li W; Gao G; Zhu L; Ni L; Diao G; Chen M
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24662-24670. PubMed ID: 28682585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile synthesis of novel tunable highly porous CuO nanorods for high rate lithium battery anodes with realized long cycle life and high reversible capacity.
    Wang L; Gong H; Wang C; Wang D; Tang K; Qian Y
    Nanoscale; 2012 Nov; 4(21):6850-5. PubMed ID: 23034730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-pot formation of SnO2 hollow nanospheres and alpha-Fe2O3@SnO2 nanorattles with large void space and their lithium storage properties.
    Chen JS; Li CM; Zhou WW; Yan QY; Archer LA; Lou XW
    Nanoscale; 2009 Nov; 1(2):280-5. PubMed ID: 20644851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.