BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 23653599)

  • 1. Deciphering the role of CA1 inhibitory circuits in sharp wave-ripple complexes.
    Cutsuridis V; Taxidis J
    Front Syst Neurosci; 2013; 7():13. PubMed ID: 23653599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitory Parvalbumin Basket Cell Activity is Selectively Reduced during Hippocampal Sharp Wave Ripples in a Mouse Model of Familial Alzheimer's Disease.
    Caccavano A; Bozzelli PL; Forcelli PA; Pak DTS; Wu JY; Conant K; Vicini S
    J Neurosci; 2020 Jun; 40(26):5116-5136. PubMed ID: 32439703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of sharp wave initiation and ripple generation.
    Schlingloff D; Káli S; Freund TF; Hájos N; Gulyás AI
    J Neurosci; 2014 Aug; 34(34):11385-98. PubMed ID: 25143618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hippocampal Ripple Oscillations and Inhibition-First Network Models: Frequency Dynamics and Response to GABA Modulators.
    Donoso JR; Schmitz D; Maier N; Kempter R
    J Neurosci; 2018 Mar; 38(12):3124-3146. PubMed ID: 29453207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of Sharp Wave-Ripple Events by Disinhibition.
    Evangelista R; Cano G; Cooper C; Schmitz D; Maier N; Kempter R
    J Neurosci; 2020 Oct; 40(41):7811-7836. PubMed ID: 32913107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disruption of perineuronal nets increases the frequency of sharp wave ripple events.
    Sun ZY; Bozzelli PL; Caccavano A; Allen M; Balmuth J; Vicini S; Wu JY; Conant K
    Hippocampus; 2018 Jan; 28(1):42-52. PubMed ID: 28921856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postnatal Maturation of Membrane Potential Dynamics during
    Noguchi A; Matsumoto N; Ikegaya Y
    J Neurosci; 2023 Aug; 43(35):6126-6140. PubMed ID: 37400254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disrupted hippocampal sharp-wave ripple-associated spike dynamics in a transgenic mouse model of dementia.
    Witton J; Staniaszek LE; Bartsch U; Randall AD; Jones MW; Brown JT
    J Physiol; 2016 Aug; 594(16):4615-30. PubMed ID: 25480798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-frequency oscillations and sequence generation in two-population models of hippocampal region CA1.
    Braun W; Memmesheimer RM
    PLoS Comput Biol; 2022 Feb; 18(2):e1009891. PubMed ID: 35176028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase-Locked Inhibition, but Not Excitation, Underlies Hippocampal Ripple Oscillations in Awake Mice In Vivo.
    Gan J; Weng SM; Pernía-Andrade AJ; Csicsvari J; Jonas P
    Neuron; 2017 Jan; 93(2):308-314. PubMed ID: 28041883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dentate Gyrus Sharp Waves, a Local Field Potential Correlate of Learning in the Dentate Gyrus of Mice.
    Meier K; Merseburg A; Isbrandt D; Marguet SL; Morellini F
    J Neurosci; 2020 Sep; 40(37):7105-7118. PubMed ID: 32817247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling sharp wave-ripple complexes through a CA3-CA1 network model with chemical synapses.
    Taxidis J; Coombes S; Mason R; Owen MR
    Hippocampus; 2012 May; 22(5):995-1017. PubMed ID: 21452258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interneuronal gap junctions increase synchrony and robustness of hippocampal ripple oscillations.
    Holzbecher A; Kempter R
    Eur J Neurosci; 2018 Dec; 48(12):3446-3465. PubMed ID: 30414336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hippocampal-Prefrontal Reactivation during Learning Is Stronger in Awake Compared with Sleep States.
    Tang W; Shin JD; Frank LM; Jadhav SP
    J Neurosci; 2017 Dec; 37(49):11789-11805. PubMed ID: 29089440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of slow oscillation on hippocampal activity and ripples through cortico-hippocampal synaptic interactions, analyzed by a cortical-CA3-CA1 network model.
    Taxidis J; Mizuseki K; Mason R; Owen MR
    Front Comput Neurosci; 2013; 7():3. PubMed ID: 23386827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sharp-wave ripple features in macaques depend on behavioral state and cell-type specific firing.
    Hussin AT; Leonard TK; Hoffman KL
    Hippocampus; 2020 Jan; 30(1):50-59. PubMed ID: 30371963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exposure to sounds during sleep impairs hippocampal sharp wave ripples and memory consolidation.
    Salgado-Puga K; Rothschild G
    bioRxiv; 2023 Nov; ():. PubMed ID: 38045371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms.
    Ylinen A; Bragin A; Nádasdy Z; Jandó G; Szabó I; Sik A; Buzsáki G
    J Neurosci; 1995 Jan; 15(1 Pt 1):30-46. PubMed ID: 7823136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Unified Dynamic Model for Learning, Replay, and Sharp-Wave/Ripples.
    Jahnke S; Timme M; Memmesheimer RM
    J Neurosci; 2015 Dec; 35(49):16236-58. PubMed ID: 26658873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reorganization of CA1 dendritic dynamics by hippocampal sharp-wave ripples during learning.
    Rolotti SV; Blockus H; Sparks FT; Priestley JB; Losonczy A
    Neuron; 2022 Mar; 110(6):977-991.e4. PubMed ID: 35041805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.