These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 23653616)
21. Coarse-to-fine encoding of spatial frequency information into visual short-term memory for faces but impartial decay. Gao Z; Bentin S J Exp Psychol Hum Percept Perform; 2011 Aug; 37(4):1051-64. PubMed ID: 21500938 [TBL] [Abstract][Full Text] [Related]
22. Early visual processing deficits in patients with schizophrenia during spatial frequency-dependent facial affect processing. Kim DW; Shim M; Song MJ; Im CH; Lee SH Schizophr Res; 2015 Feb; 161(2-3):314-21. PubMed ID: 25553978 [TBL] [Abstract][Full Text] [Related]
23. Distinct spatial scale sensitivities for early categorization of faces and places: neuromagnetic and behavioral findings. Awasthi B; Sowman PF; Friedman J; Williams MA Front Hum Neurosci; 2013; 7():91. PubMed ID: 23519842 [TBL] [Abstract][Full Text] [Related]
24. Enhanced extrastriate visual response to bandpass spatial frequency filtered fearful faces: time course and topographic evoked-potentials mapping. Pourtois G; Dan ES; Grandjean D; Sander D; Vuilleumier P Hum Brain Mapp; 2005 Sep; 26(1):65-79. PubMed ID: 15954123 [TBL] [Abstract][Full Text] [Related]
25. Spatial scale contribution to early visual differences between face and object processing. Goffaux V; Gauthier I; Rossion B Brain Res Cogn Brain Res; 2003 May; 16(3):416-24. PubMed ID: 12706221 [TBL] [Abstract][Full Text] [Related]
26. Early and late effects of objecthood and spatial frequency on event-related potentials and gamma band activity. Craddock M; Martinovic J; Müller MM BMC Neurosci; 2015 Feb; 16():6. PubMed ID: 25886858 [TBL] [Abstract][Full Text] [Related]
27. Neural responses to emotional expression information in high- and low-spatial frequency in autism: evidence for a cortical dysfunction. Corradi-Dell'acqua C; Schwartz S; Meaux E; Hubert B; Vuilleumier P; Deruelle C Front Hum Neurosci; 2014; 8():189. PubMed ID: 24782735 [TBL] [Abstract][Full Text] [Related]
28. The Neural Bases of the Semantic Interference of Spatial Frequency-based Information in Scenes. Kauffmann L; Bourgin J; Guyader N; Peyrin C J Cogn Neurosci; 2015 Dec; 27(12):2394-405. PubMed ID: 26244724 [TBL] [Abstract][Full Text] [Related]
29. Decreased spatial frequency sensitivities for processing faces in male patients with chronic schizophrenia. Obayashi C; Nakashima T; Onitsuka T; Maekawa T; Hirano Y; Hirano S; Oribe N; Kaneko K; Kanba S; Tobimatsu S Clin Neurophysiol; 2009 Aug; 120(8):1525-33. PubMed ID: 19632149 [TBL] [Abstract][Full Text] [Related]
30. Time course of spatial frequency integration in face perception: An ERP study. Jeantet C; Laprevote V; Schwan R; Schwitzer T; Maillard L; Lighezzolo-Alnot J; Caharel S Int J Psychophysiol; 2019 Sep; 143():105-115. PubMed ID: 31276696 [TBL] [Abstract][Full Text] [Related]
31. The neural bases of spatial frequency processing during scene perception. Kauffmann L; Ramanoël S; Peyrin C Front Integr Neurosci; 2014; 8():37. PubMed ID: 24847226 [TBL] [Abstract][Full Text] [Related]
32. Scene perception in age-related macular degeneration: Effect of spatial frequencies and contrast in residual vision. Peyrin C; Ramanoël S; Roux-Sibilon A; Chokron S; Hera R Vision Res; 2017 Jan; 130():36-47. PubMed ID: 27876510 [TBL] [Abstract][Full Text] [Related]
33. Impact of glaucoma on the spatial frequency processing of scenes in central vision. Trouilloud A; Ferry E; Boucart M; Kauffmann L; Warniez A; Rouland JF; Peyrin C Vis Neurosci; 2023 Feb; 40():E001. PubMed ID: 36752177 [TBL] [Abstract][Full Text] [Related]
34. Spatial Frequency Tuning of Body Inversion Effects. D'Argenio G; Finisguerra A; Urgesi C Brain Sci; 2023 Jan; 13(2):. PubMed ID: 36831733 [TBL] [Abstract][Full Text] [Related]
35. Cortical Thickness and Natural Scene Recognition in the Child's Brain. Orliac F; Borst G; Simon G; Mevel K; Vidal J; Dollfus S; Houdé O; Peyrin C; Poirel N Brain Sci; 2020 May; 10(6):. PubMed ID: 32481756 [TBL] [Abstract][Full Text] [Related]
36. Processing of spatial-frequency altered faces in schizophrenia: effects of illness phase and duration. Silverstein SM; Keane BP; Papathomas TV; Lathrop KL; Kourtev H; Feigenson K; Roché MW; Wang Y; Mikkilineni D; Paterno D PLoS One; 2014; 9(12):e114642. PubMed ID: 25485784 [TBL] [Abstract][Full Text] [Related]
37. Modulation of microsaccades by spatial frequency during object categorization. Craddock M; Oppermann F; Müller MM; Martinovic J Vision Res; 2017 Jan; 130():48-56. PubMed ID: 27876511 [TBL] [Abstract][Full Text] [Related]
38. Hemispheric specialization of human inferior temporal cortex during coarse-to-fine and fine-to-coarse analysis of natural visual scenes. Peyrin C; Schwartz S; Seghier M; Michel C; Landis T; Vuilleumier P Neuroimage; 2005 Nov; 28(2):464-73. PubMed ID: 15993630 [TBL] [Abstract][Full Text] [Related]
39. Socially anxious individuals discriminate better between angry and neutral faces, particularly when using low spatial frequency information. Langner O; Becker ES; Rinck M; van Knippenberg A J Behav Ther Exp Psychiatry; 2015 Mar; 46():44-9. PubMed ID: 25208930 [TBL] [Abstract][Full Text] [Related]
40. Retinotopic and lateralized processing of spatial frequencies in human visual cortex during scene categorization. Musel B; Bordier C; Dojat M; Pichat C; Chokron S; Le Bas JF; Peyrin C J Cogn Neurosci; 2013 Aug; 25(8):1315-31. PubMed ID: 23574583 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]