These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 23653903)
1. A colorimetric method for H1N1 DNA detection using rolling circle amplification. Xing Y; Wang P; Zang Y; Ge Y; Jin Q; Zhao J; Xu X; Zhao G; Mao H Analyst; 2013 Jun; 138(12):3457-62. PubMed ID: 23653903 [TBL] [Abstract][Full Text] [Related]
2. Rolling circle amplification combined with gold nanoparticle aggregates for highly sensitive identification of single-nucleotide polymorphisms. Li J; Deng T; Chu X; Yang R; Jiang J; Shen G; Yu R Anal Chem; 2010 Apr; 82(7):2811-6. PubMed ID: 20192245 [TBL] [Abstract][Full Text] [Related]
3. Multiplexed aptasensing of food contaminants by using terminal deoxynucleotidyl transferase-produced primer-triggered rolling circle amplification: application to the colorimetric determination of enrofloxacin, lead (II), Escherichia coli O157:H7 and tropomyosin. Du Y; Zhou Y; Wen Y; Bian X; Xie Y; Zhang W; Liu G; Yan J Mikrochim Acta; 2019 Nov; 186(12):840. PubMed ID: 31768650 [TBL] [Abstract][Full Text] [Related]
4. Sensitive colorimetric detection of protein by gold nanoparticles and rolling circle amplification. Chen C; Luo M; Ye T; Li N; Ji X; He Z Analyst; 2015 Jul; 140(13):4515-20. PubMed ID: 25988199 [TBL] [Abstract][Full Text] [Related]
5. Rolling circle amplification immunoassay combined with gold nanoparticle aggregates for colorimetric detection of protein. Wang P; Jin B; Xing Y; Cheng Z; Ge Y; Zhang H; Hu B; Mao H; Jin Q; Zhao J J Nanosci Nanotechnol; 2014 Aug; 14(8):5662-8. PubMed ID: 25935986 [TBL] [Abstract][Full Text] [Related]
6. Scanometric analysis of DNA microarrays using DNA intercalator-conjugated gold nanoparticles. Cho H; Jung J; Chung BH Chem Commun (Camb); 2012 Aug; 48(61):7601-3. PubMed ID: 22732710 [TBL] [Abstract][Full Text] [Related]
7. A sensitive colorimetric assay system for nucleic acid detection based on isothermal signal amplification technology. Hu B; Guo J; Xu Y; Wei H; Zhao G; Guan Y Anal Bioanal Chem; 2017 Aug; 409(20):4819-4825. PubMed ID: 28689323 [TBL] [Abstract][Full Text] [Related]
8. Colorimetric monitoring of rolling circle amplification for detection of H5N1 influenza virus using metal indicator. Hamidi SV; Ghourchian H Biosens Bioelectron; 2015 Oct; 72():121-6. PubMed ID: 25974174 [TBL] [Abstract][Full Text] [Related]
9. Ultrasensitive colorimetric carcinoembryonic antigen biosensor based on hyperbranched rolling circle amplification. Liang K; Zhai S; Zhang Z; Fu X; Shao J; Lin Z; Qiu B; Chen GN Analyst; 2014 Sep; 139(17):4330-4. PubMed ID: 24996292 [TBL] [Abstract][Full Text] [Related]
10. Rolling-circle amplification detection of thrombin using surface-enhanced Raman spectroscopy with core-shell nanoparticle probe. Li X; Wang L; Li C Chemistry; 2015 Apr; 21(18):6817-22. PubMed ID: 25766032 [TBL] [Abstract][Full Text] [Related]
11. Sensitive detection of transcription factors by isothermal exponential amplification-based colorimetric assay. Zhang Y; Hu J; Zhang CY Anal Chem; 2012 Nov; 84(21):9544-9. PubMed ID: 23050558 [TBL] [Abstract][Full Text] [Related]
12. A cascade amplification strategy based on rolling circle amplification and hydroxylamine amplified gold nanoparticles enables chemiluminescence detection of adenosine triphosphate. Wang P; Zhang T; Yang T; Jin N; Zhao Y; Fan A Analyst; 2014 Aug; 139(15):3796-803. PubMed ID: 24899364 [TBL] [Abstract][Full Text] [Related]
13. Impedimetric detection of influenza A (H1N1) DNA sequence using carbon nanotubes platform and gold nanoparticles amplification. Bonanni A; Pividori MI; del Valle M Analyst; 2010 Jul; 135(7):1765-72. PubMed ID: 20458407 [TBL] [Abstract][Full Text] [Related]
14. Label-free picomolar detection of Pb2+ using atypical icosahedra gold nanoparticles and rolling circle amplification. Peng Y; Li L; Yi X; Guo L Biosens Bioelectron; 2014 Sep; 59():314-20. PubMed ID: 24747569 [TBL] [Abstract][Full Text] [Related]
15. Periodic assembly of nanospecies on repetitive DNA sequences generated on gold nanoparticles by rolling circle amplification. Zhao W; Brook MA; Li Y Methods Mol Biol; 2008; 474():79-90. PubMed ID: 19031062 [TBL] [Abstract][Full Text] [Related]
16. Ultrasensitive colorimetric DNA detection using a combination of rolling circle amplification and nicking endonuclease-assisted nanoparticle amplification (NEANA). Xu W; Xie X; Li D; Yang Z; Li T; Liu X Small; 2012 Jun; 8(12):1846-50. PubMed ID: 22461378 [TBL] [Abstract][Full Text] [Related]
17. A universal electrochemical sensing system for small biomolecules using target-mediated sticky ends-based ligation-rolling circle amplification. Yi X; Li L; Peng Y; Guo L Biosens Bioelectron; 2014 Jul; 57():103-9. PubMed ID: 24561524 [TBL] [Abstract][Full Text] [Related]
18. Simple rolling circle amplification colorimetric assay based on pH for target DNA detection. Hamidi SV; Perreault J Talanta; 2019 Aug; 201():419-425. PubMed ID: 31122444 [TBL] [Abstract][Full Text] [Related]
19. Sensitive and specific colorimetric DNA detection by invasive reaction coupled with nicking endonuclease-assisted nanoparticles amplification. Zou B; Cao X; Wu H; Song Q; Wang J; Kajiyama T; Kambara H; Zhou G Biosens Bioelectron; 2015 Apr; 66():50-4. PubMed ID: 25460881 [TBL] [Abstract][Full Text] [Related]
20. A novel electrochemical sensing strategy for rapid and ultrasensitive detection of Salmonella by rolling circle amplification and DNA-AuNPs probe. Zhu D; Yan Y; Lei P; Shen B; Cheng W; Ju H; Ding S Anal Chim Acta; 2014 Oct; 846():44-50. PubMed ID: 25220140 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]