These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 23654373)

  • 1. Measurements of the impedance matrix of a thermoacoustic core: applications to the design of thermoacoustic engines.
    Bannwart FC; Penelet G; Lotton P; Dalmont JP
    J Acoust Soc Am; 2013 May; 133(5):2650-60. PubMed ID: 23654373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical prediction of the onset of thermoacoustic instability from the experimental transfer matrix of a thermoacoustic core.
    Guedra M; Penelet G; Lotton P; Dalmont JP
    J Acoust Soc Am; 2011 Jul; 130(1):145-52. PubMed ID: 21786885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoacoustic power conversion using a piezoelectric transducer.
    Jensen C; Raspet R
    J Acoust Soc Am; 2010 Jul; 128(1):98-103. PubMed ID: 20649205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low Mach number analysis of idealized thermoacoustic engines with numerical solution.
    Hireche O; Weisman C; Baltean-Carlès D; Le Quéré P; Bauwens L
    J Acoust Soc Am; 2010 Dec; 128(6):3438-48. PubMed ID: 21218877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fishbone-like instability in a looped-tube thermoacoustic engine.
    Yu Z; Jaworski AJ; Abduljalil AS
    J Acoust Soc Am; 2010 Oct; 128(4):EL188-94. PubMed ID: 20968324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.
    de Jong JA; Wijnant YH; de Boer A
    J Acoust Soc Am; 2014 Mar; 135(3):1149-58. PubMed ID: 24606258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Helmholtz-like resonators for thermoacoustic prime movers.
    Andersen BJ; Symko OG
    J Acoust Soc Am; 2009 Feb; 125(2):787-92. PubMed ID: 19206856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nusselt numbers of laminar, oscillating flows in stacks and regenerators with pores of arbitrary cross-sectional geometry.
    Brady JF
    J Acoust Soc Am; 2013 Apr; 133(4):2004-13. PubMed ID: 23556571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Difference in electrodynamic transduction between speaker and alternator in thermoacoustic applications.
    Gonen E; Grossman G
    J Acoust Soc Am; 2015 Sep; 138(3):1537-48. PubMed ID: 26428791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustical power amplification and damping by temperature gradients.
    Biwa T; Komatsu R; Yazaki T
    J Acoust Soc Am; 2011 Jan; 129(1):132-7. PubMed ID: 21302995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of acoustic field modulation in the regenerator by double loudspeakers method.
    Zhou L; Xie X; Li Q
    J Acoust Soc Am; 2011 Nov; 130(5):2709-19. PubMed ID: 22087899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic methods for measuring the porosities of porous materials incorporating dead-end pores.
    Dupont T; Leclaire P; Panneton R
    J Acoust Soc Am; 2013 Apr; 133(4):2136-45. PubMed ID: 23556583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental evaluation of the acoustic properties of stacked-screen regenerators.
    Ueda Y; Kato T; Kato C
    J Acoust Soc Am; 2009 Feb; 125(2):780-6. PubMed ID: 19206855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a hybrid wave based-transfer matrix model for sound transmission analysis.
    Dijckmans A; Vermeir G
    J Acoust Soc Am; 2013 Apr; 133(4):2157-68. PubMed ID: 23556585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A description of transversely isotropic sound absorbing porous materials by transfer matrices.
    Khurana P; Boeckx L; Lauriks W; Leclaire P; Dazel O; Allard JF
    J Acoust Soc Am; 2009 Feb; 125(2):915-21. PubMed ID: 19206868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical and analytical solutions for sound propagation and absorption in porous media at high sound pressure levels.
    Zhang B; Chen T; Zhao Y; Zhang W; Zhu J
    J Acoust Soc Am; 2012 Sep; 132(3):1436-49. PubMed ID: 22978873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of the resistivity of porous materials with an alternating air-flow method.
    Dragonetti R; Ianniello C; Romano RA
    J Acoust Soc Am; 2011 Feb; 129(2):753-64. PubMed ID: 21361434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sound radiation from a flanged inclined duct.
    McAlpine A; Daymond-King AP; Kempton AJ
    J Acoust Soc Am; 2012 Dec; 132(6):3637-46. PubMed ID: 23231096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibroacoustic response sensitivity due to relative alignment of two anisotropic poro-elastic layers.
    Lind Nordgren E; Göransson P; Deü JF; Dazel O
    J Acoust Soc Am; 2013 May; 133(5):EL426-30. PubMed ID: 23656104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of parabolic reflector to amplify in-air signals generated during impact-echo testing.
    Dai X; Zhu J; Tsai YT; Haberman MR
    J Acoust Soc Am; 2011 Oct; 130(4):EL167-72. PubMed ID: 21974487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.