These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 23654420)

  • 1. Experimental methods for the characterization of the frequency-dependent viscoelastic properties of soft materials.
    Kazemirad S; Heris HK; Mongeau L
    J Acoust Soc Am; 2013 May; 133(5):3186-97. PubMed ID: 23654420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rayleigh wave propagation method for the characterization of a thin layer of biomaterials.
    Kazemirad S; Mongeau L
    J Acoust Soc Am; 2013 Jun; 133(6):4332-42. PubMed ID: 23742382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the high-frequency complex modulus of silicone rubber using standing Lamb waves and an inverse finite element method.
    Jonsson U; Lindahl O; Andersson B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Dec; 61(12):2106-20. PubMed ID: 25474785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstructing 3-D maps of the local viscoelastic properties using a finite-amplitude modulated radiation force.
    Giannoula A; Cobbold R; Bezerianos A
    Ultrasonics; 2014 Feb; 54(2):563-75. PubMed ID: 24011778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring viscoelasticity of soft samples using atomic force microscopy.
    Tripathy S; Berger EJ
    J Biomech Eng; 2009 Sep; 131(9):094507. PubMed ID: 19725704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of effective mass density and modulus for resonant metamaterials.
    Park J; Park B; Kim D; Park J
    J Acoust Soc Am; 2012 Oct; 132(4):2793-9. PubMed ID: 23039545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatially resolved frequency-dependent elasticity measured with pulsed force microscopy and nanoindentation.
    Sweers KK; van der Werf KO; Bennink ML; Subramaniam V
    Nanoscale; 2012 Mar; 4(6):2072-7. PubMed ID: 22331128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic viscoelastic properties of experimental silicone soft lining materials.
    Santawisuk W; Kanchanavasita W; Sirisinha C; Harnirattisai C
    Dent Mater J; 2010 Aug; 29(4):454-60. PubMed ID: 20647638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring mechanical wave speed, dispersion, and viscoelastic modulus of the cornea using optical coherence elastography.
    Ramier A; Tavakol B; Yun SH
    Opt Express; 2019 Jun; 27(12):16635-16649. PubMed ID: 31252887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rayleigh wave propagation in nematic elastomers.
    Yang S; Liu Y; Gu Y; Yang Q
    Soft Matter; 2014 Jun; 10(23):4110-7. PubMed ID: 24740423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasound Shear Wave Viscoelastography: Model-Independent Quantification of the Complex Shear Modulus.
    Kazemirad S; Bernard S; Hybois S; Tang A; Cloutier G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Sep; 63(9):1399-1408. PubMed ID: 27362951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of a forward model of axisymmetric shear wave propagation in viscoelastic media to shear wave elastography.
    Yengul SS; Barbone PE; Madore B
    J Acoust Soc Am; 2018 Jun; 143(6):3266. PubMed ID: 29960488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing viscoelastic mechanical properties of highly compliant polymers and biological tissues using impact indentation.
    Mijailovic AS; Qing B; Fortunato D; Van Vliet KJ
    Acta Biomater; 2018 Apr; 71():388-397. PubMed ID: 29477455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The performance of steady-state harmonic magnetic resonance elastography when applied to viscoelastic materials.
    Doyley MM; Perreard I; Patterson AJ; Weaver JB; Paulsen KM
    Med Phys; 2010 Aug; 37(8):3970-9. PubMed ID: 20879559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quasi-plane shear wave propagation induced by acoustic radiation force with a focal line region: a simulation study.
    Guo M; Abbott D; Lu M; Liu H
    Australas Phys Eng Sci Med; 2016 Mar; 39(1):187-97. PubMed ID: 26768475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of viscoelastic properties of in vivo swine myocardium using lamb wave dispersion ultrasound vibrometry (LDUV).
    Urban MW; Pislaru C; Nenadic IZ; Kinnick RR; Greenleaf JF
    IEEE Trans Med Imaging; 2013 Feb; 32(2):247-61. PubMed ID: 23060325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high-frequency shear device for testing soft biological tissues.
    Arbogast KB; Thibault KL; Pinheiro BS; Winey KI; Margulies SS
    J Biomech; 1997 Jul; 30(7):757-9. PubMed ID: 9239559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of pigments on dynamic mechanical properties of a maxillofacial prosthetic elastomer.
    Hu X; Pan X; Johnston WM
    J Prosthet Dent; 2014 Nov; 112(5):1298-303. PubMed ID: 24836534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The inverse problem of acoustic wave scattering by an air-saturated poroelastic cylinder.
    Ogam E; Fellah ZE; Baki P
    J Acoust Soc Am; 2013 Mar; 133(3):1443-57. PubMed ID: 23464016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Error in estimates of tissue material properties from shear wave dispersion ultrasound vibrometry.
    Urban MW; Chen S; Greenleaf JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):748-58. PubMed ID: 19406703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.