These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

574 related articles for article (PubMed ID: 23656120)

  • 21. Dissociation energy of ekaplutonium fluoride E126F: the first diatomic with molecular spinors consisting of g atomic spinors.
    Malli GL
    J Chem Phys; 2006 Feb; 124(7):71102. PubMed ID: 16497023
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An analysis of core effects on shape-consistent pseudopotentials.
    Fromager E; Maron L; Teichteil C; Heully JL; Faegri K; Dyall K
    J Chem Phys; 2004 Nov; 121(18):8687-98. PubMed ID: 15527332
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electronic structure of three-dimensional isotropic quantum dots by four-component relativistic coupled cluster methods.
    Yakobi H; Eliav E; Kaldor U
    J Chem Phys; 2011 Feb; 134(5):054503. PubMed ID: 21303134
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Segmented Contracted Error-Consistent Basis Sets of Quadruple-ζ Valence Quality for One- and Two-Component Relativistic All-Electron Calculations.
    Franzke YJ; Spiske L; Pollak P; Weigend F
    J Chem Theory Comput; 2020 Sep; 16(9):5658-5674. PubMed ID: 32786897
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electronic spectra of DyF studied by four-component relativistic configuration interaction methods.
    Yamamoto S; Tatewaki H
    J Chem Phys; 2015 Mar; 142(9):094312. PubMed ID: 25747086
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electronic structures and bonding of CeF: a frozen-core four-component relativistic configuration interaction study.
    Wasada-Tsutsui Y; Watanabe Y; Tatewaki H
    J Phys Chem A; 2007 Sep; 111(36):8877-83. PubMed ID: 17705453
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Performance of Effective Core Potentials for Density Functional Calculations on 3d Transition Metals.
    Xu X; Truhlar DG
    J Chem Theory Comput; 2012 Jan; 8(1):80-90. PubMed ID: 26592870
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energy-consistent small-core pseudopotentials for 3d-transition metals adapted to quantum Monte Carlo calculations.
    Burkatzki M; Filippi C; Dolg M
    J Chem Phys; 2008 Oct; 129(16):164115. PubMed ID: 19045255
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer.
    Hanni M; Lantto P; Ilias M; Jensen HJ; Vaara J
    J Chem Phys; 2007 Oct; 127(16):164313. PubMed ID: 17979344
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spin-Orbit Coupling Constants in Atoms and Ions of Transition Elements: Comparison of Effective Core Potentials, Model Core Potentials, and All-Electron Methods.
    Koseki S; Matsunaga N; Asada T; Schmidt MW; Gordon MS
    J Phys Chem A; 2019 Mar; 123(12):2325-2339. PubMed ID: 30817150
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relativistic contributions to single and double core electron ionization energies of noble gases.
    Niskanen J; Norman P; Aksela H; Agren H
    J Chem Phys; 2011 Aug; 135(5):054310. PubMed ID: 21823703
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dirac-Fock-Breit-Gaunt calculations for tungsten hexacarbonyl W(CO)6.
    Malli GL
    J Chem Phys; 2016 May; 144(19):194301. PubMed ID: 27208943
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Third-order Douglas-Kroll relativistic coupled-cluster theory through connected single, double, triple, and quadruple substitutions: applications to diatomic and triatomic hydrides.
    Hirata S; Yanai T; de Jong WA; Nakajima T; Hirao K
    J Chem Phys; 2004 Feb; 120(7):3297-310. PubMed ID: 15268484
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Leading-order relativistic effects on nuclear magnetic resonance shielding tensors.
    Manninen P; Ruud K; Lantto P; Vaara J
    J Chem Phys; 2005 Mar; 122(11):114107. PubMed ID: 15836201
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pseudopotentials for correlated electron systems.
    Trail JR; Needs RJ
    J Chem Phys; 2013 Jul; 139(1):014101. PubMed ID: 23822287
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Revisiting the geometry of nd10 (n+1)s0 [M(H2O)]p+ complexes using four-component relativistic DFT calculations and scalar relativistic correlated CSOV energy decompositions (M(p+) = Cu+, Zn2+, Ag+, Cd2+, Au+, Hg2+).
    Gourlaouen C; Piquemal JP; Saue T; Parisel O
    J Comput Chem; 2006 Jan; 27(2):142-56. PubMed ID: 16312018
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Variational and diffusion Monte Carlo study of post-d group 13-17 elements.
    Al-Saidi WA
    J Chem Phys; 2008 Aug; 129(6):064316. PubMed ID: 18715078
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Towards accurate all-electron quantum Monte Carlo calculations of transition-metal systems: spectroscopy of the copper atom.
    Caffarel M; Daudey JP; Heully JL; Ramírez-Solís A
    J Chem Phys; 2005 Sep; 123(9):94102. PubMed ID: 16164336
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Segmented Contracted Error-Consistent Basis Sets of Double- and Triple-ζ Valence Quality for One- and Two-Component Relativistic All-Electron Calculations.
    Pollak P; Weigend F
    J Chem Theory Comput; 2017 Aug; 13(8):3696-3705. PubMed ID: 28679044
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The convergence of complete active space self-consistent-field configuration interaction including all single and double excitation energies to the complete basis set limit.
    Petersson GA; Malick DK; Frisch MJ; Braunstein M
    J Chem Phys; 2006 Jul; 125(4):44107. PubMed ID: 16942134
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.