These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

574 related articles for article (PubMed ID: 23656120)

  • 41. Two-component relativistic density-functional calculations of the dimers of the halogens from bromine through element 117 using effective core potential and all-electron methods.
    Mitin AV; van Wüllen C
    J Chem Phys; 2006 Feb; 124(6):64305. PubMed ID: 16483205
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Calculations of nuclear quadrupole coupling in noble gas-noble metal fluorides: interplay of relativistic and electron correlation effects.
    Lantto P; Vaara J
    J Chem Phys; 2006 Nov; 125(17):174315. PubMed ID: 17100447
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A closed-shell coupled-cluster treatment of the Breit-Pauli first-order relativistic energy correction.
    Coriani S; Helgaker T; Jørgensen P; Klopper W
    J Chem Phys; 2004 Oct; 121(14):6591-8. PubMed ID: 15473713
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fully Relativistic Calculations of Faraday and Nuclear Spin-Induced Optical Rotation in Xenon.
    Ikäläinen S; Lantto P; Vaara J
    J Chem Theory Comput; 2012 Jan; 8(1):91-8. PubMed ID: 26592871
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Relativistic effects determined using the Douglas-Kroll contracted basis sets and correlation consistent basis sets with small-core relativistic pseudopotentials.
    Yockel S; Wilson AK
    J Chem Phys; 2005 May; 122(17):174310. PubMed ID: 15910035
    [TBL] [Abstract][Full Text] [Related]  

  • 46. On the accuracy of one-component pseudopotential spin-orbit calculations.
    Fromager E; Visscher L; Maron L; Teichteil C
    J Chem Phys; 2005 Oct; 123(16):164105. PubMed ID: 16268679
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Breit interaction contribution to parity violating potentials in chiral molecules containing light nuclei.
    Berger R
    J Chem Phys; 2008 Oct; 129(15):154105. PubMed ID: 19045174
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Perturbative treatment of scalar-relativistic effects in coupled-cluster calculations of equilibrium geometries and harmonic vibrational frequencies using analytic second-derivative techniques.
    Michauk C; Gauss J
    J Chem Phys; 2007 Jul; 127(4):044106. PubMed ID: 17672680
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Relativistic Prolapse-Free Gaussian Basis Set of Quadruple-ζ Quality: (aug-)RPF-4Z. I. The s- and p-Block Elements.
    Teodoro TQ; da Silva AB; Haiduke RL
    J Chem Theory Comput; 2014 Sep; 10(9):3800-6. PubMed ID: 26588525
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The one-particle Green's function method in the Dirac-Hartree-Fock framework. I. Second-order valence ionization energies of Ne through Xe.
    Pernpointner M; Trofimov AB
    J Chem Phys; 2004 Mar; 120(9):4098-106. PubMed ID: 15268576
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-level ab initio predictions for the ionization energy, bond dissociation energies, and heats of formation of cobalt carbide (CoC) and its cation (CoC+).
    Lau KC; Pan Y; Lam CS; Huang H; Chang YC; Luo Z; Shi X; Ng CY
    J Chem Phys; 2013 Mar; 138(9):094302. PubMed ID: 23485289
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nuclear quadrupole moment of 197Au from high-accuracy atomic calculations.
    Yakobi H; Eliav E; Kaldor U
    J Chem Phys; 2007 May; 126(18):184305. PubMed ID: 17508801
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 4s, 5s, 6s, and 7s elements.
    Dyall KG
    J Phys Chem A; 2009 Nov; 113(45):12638-44. PubMed ID: 19670829
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ab initio calculations for the Zn 2s and 2p core level binding energies in Zn oxo compounds and ZnO.
    Rössler N; Kotsis K; Staemmler V
    Phys Chem Chem Phys; 2006 Feb; 8(6):697-706. PubMed ID: 16482309
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-accuracy calculation of nuclear quadrupole moments of atomic halogens.
    Yakobi H; Eliav E; Visscher L; Kaldor U
    J Chem Phys; 2007 Feb; 126(5):054301. PubMed ID: 17302471
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell pi-conjugated systems.
    Champagne B; Botek E; Nakano M; Nitta T; Yamaguchi K
    J Chem Phys; 2005 Mar; 122(11):114315. PubMed ID: 15839724
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Going beyond the frozen core approximation: development of coordinate-dependent pseudopotentials and application to Na2(+).
    Kahros A; Schwartz BJ
    J Chem Phys; 2013 Feb; 138(5):054110. PubMed ID: 23406101
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Relativistic EOM-CCSD for Core-Excited and Core-Ionized State Energies Based on the Four-Component Dirac-Coulomb(-Gaunt) Hamiltonian.
    Halbert L; Vidal ML; Shee A; Coriani S; Severo Pereira Gomes A
    J Chem Theory Comput; 2021 Jun; 17(6):3583-3598. PubMed ID: 33944570
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Calculation of binary magnetic properties and potential energy curve in xenon dimer: second virial coefficient of (129)Xe nuclear shielding.
    Hanni M; Lantto P; Runeberg N; Jokisaari J; Vaara J
    J Chem Phys; 2004 Sep; 121(12):5908-19. PubMed ID: 15367019
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-level ab initio predictions for the ionization energy, bond dissociation energies, and heats of formation of nickel carbide (NiC) and its cation (NiC+).
    Lau KC; Chang YC; Shi X; Ng CY
    J Chem Phys; 2010 Sep; 133(11):114304. PubMed ID: 20866136
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.