These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23656156)

  • 1. Brownian dynamics method for simulation of binding kinetics of patterned colloidal spheres with hydrodynamic interactions.
    Liu J; Larson RG
    J Chem Phys; 2013 May; 138(17):174904. PubMed ID: 23656156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Force, torque, translation, and rotation.
    Zia RN; Swan JW; Su Y
    J Chem Phys; 2015 Dec; 143(22):224901. PubMed ID: 26671398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brownian dynamics simulations of coagulation of dilute uniform and anisotropic particles under shear flow spanning low to high Peclet numbers.
    Mohammadi M; Larson ED; Liu J; Larson RG
    J Chem Phys; 2015 Jan; 142(2):024108. PubMed ID: 25591339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New models and predictions for Brownian coagulation of non-interacting spheres.
    Kelkar AV; Dong J; Franses EI; Corti DS
    J Colloid Interface Sci; 2013 Jan; 389(1):188-98. PubMed ID: 23036339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Are hydrodynamic interactions important in the kinetics of hydrophobic collapse?
    Li J; Morrone JA; Berne BJ
    J Phys Chem B; 2012 Sep; 116(37):11537-44. PubMed ID: 22931395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular simulation of cooperative hydrodynamic effects in motion of a periodic array of spheres between parallel walls.
    Kohale SC; Khare R
    J Chem Phys; 2008 Oct; 129(16):164706. PubMed ID: 19045297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct observation of hydrodynamic rotation-translation coupling between two colloidal spheres.
    Martin S; Reichert M; Stark H; Gisler T
    Phys Rev Lett; 2006 Dec; 97(24):248301. PubMed ID: 17280329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic interactions of two Brownian hard spheres in the presence of depletants.
    Karzar-Jeddi M; Tuinier R; Taniguchi T; Fan TH
    J Chem Phys; 2014 Jun; 140(21):214906. PubMed ID: 24908040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of surface structure evolution in colloidal adsorption: charge patterning and polydispersity.
    Brewer DD; Tsapatsis M; Kumar S
    J Chem Phys; 2010 Jul; 133(3):034709. PubMed ID: 20649352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slip-induced dynamics of patterned and Janus-like spheres in laminar flows.
    Willmott GR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066309. PubMed ID: 19658596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pair mobility functions for rigid spheres in concentrated colloidal dispersions: Stresslet and straining motion couplings.
    Su Y; Swan JW; Zia RN
    J Chem Phys; 2017 Mar; 146(12):124903. PubMed ID: 28388164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tracer diffusion in colloidal suspensions under dilute and crowded conditions with hydrodynamic interactions.
    Tomilov A; Videcoq A; Chartier T; Ala-Nissilä T; Vattulainen I
    J Chem Phys; 2012 Jul; 137(1):014503. PubMed ID: 22779661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brownian dynamics simulations of a flexible polymer chain which includes continuous resistance and multibody hydrodynamic interactions.
    Butler JE; Shaqfeh ES
    J Chem Phys; 2005 Jan; 122(1):14901. PubMed ID: 15638694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Translation-rotation decoupling of colloidal clusters of various symmetries.
    Anthony SM; Kim M; Granick S
    J Chem Phys; 2008 Dec; 129(24):244701. PubMed ID: 19123520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-time self-diffusion of charged colloidal particles: electrokinetic and hydrodynamic interaction effects.
    McPhie MG; Nägele G
    J Chem Phys; 2007 Jul; 127(3):034906. PubMed ID: 17655462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rotational diffusion of colloidal particles near confining walls.
    Jones RB
    J Chem Phys; 2005 Oct; 123(16):164705. PubMed ID: 16268720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limitations of differential electrophoresis for measuring colloidal forces: a Brownian dynamics study.
    Holtzer GL; Velegol D
    Langmuir; 2005 Oct; 21(22):10074-81. PubMed ID: 16229529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic coupling of two rotating spheres trapped in harmonic potentials.
    Reichert M; Stark H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):031407. PubMed ID: 15089294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aggregation in colloidal suspensions: evaluation of the role of hydrodynamic interactions by means of numerical simulations.
    Tomilov A; Videcoq A; Cerbelaud M; Piechowiak MA; Chartier T; Ala-Nissila T; Bochicchio D; Ferrando R
    J Phys Chem B; 2013 Nov; 117(46):14509-17. PubMed ID: 24143912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.