These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
459 related articles for article (PubMed ID: 23656223)
1. Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S, SO2, or CS2 gas. Poh HL; Šimek P; Sofer Z; Pumera M ACS Nano; 2013 Jun; 7(6):5262-72. PubMed ID: 23656223 [TBL] [Abstract][Full Text] [Related]
2. Microwave Exfoliation of Graphite Oxides in H Wong CH; Sofer Z; Klímová K; Pumera M ACS Appl Mater Interfaces; 2016 Nov; 8(46):31849-31855. PubMed ID: 27933971 [TBL] [Abstract][Full Text] [Related]
3. Sulfur and nitrogen co-doped, few-layered graphene oxide as a highly efficient electrocatalyst for the oxygen-reduction reaction. Xu J; Dong G; Jin C; Huang M; Guan L ChemSusChem; 2013 Mar; 6(3):493-9. PubMed ID: 23404829 [TBL] [Abstract][Full Text] [Related]
4. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. Yang Z; Yao Z; Li G; Fang G; Nie H; Liu Z; Zhou X; Chen X; Huang S ACS Nano; 2012 Jan; 6(1):205-11. PubMed ID: 22201338 [TBL] [Abstract][Full Text] [Related]
5. Searching for magnetism in hydrogenated graphene: using highly hydrogenated graphene prepared via Birch reduction of graphite oxides. Eng AY; Poh HL; Šaněk F; Maryško M; Matějková S; Sofer Z; Pumera M ACS Nano; 2013 Jul; 7(7):5930-9. PubMed ID: 23777325 [TBL] [Abstract][Full Text] [Related]
6. Highly hydrogenated graphene through microwave exfoliation of graphite oxide in hydrogen plasma: towards electrochemical applications. Eng AY; Sofer Z; Šimek P; Kosina J; Pumera M Chemistry; 2013 Nov; 19(46):15583-92. PubMed ID: 24123303 [TBL] [Abstract][Full Text] [Related]
7. Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties. Poh HL; Šaněk F; Ambrosi A; Zhao G; Sofer Z; Pumera M Nanoscale; 2012 Jun; 4(11):3515-22. PubMed ID: 22535381 [TBL] [Abstract][Full Text] [Related]
8. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. Sheng ZH; Shao L; Chen JJ; Bao WJ; Wang FB; Xia XH ACS Nano; 2011 Jun; 5(6):4350-8. PubMed ID: 21574601 [TBL] [Abstract][Full Text] [Related]
9. Enhanced reactive adsorption of hydrogen sulfide on the composites of graphene/graphite oxide with copper (hydr)oxychlorides. Mabayoje O; Seredych M; Bandosz TJ ACS Appl Mater Interfaces; 2012 Jun; 4(6):3316-24. PubMed ID: 22667349 [TBL] [Abstract][Full Text] [Related]
10. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials. Laycock CJ; Staniforth JZ; Ormerod RM Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706 [TBL] [Abstract][Full Text] [Related]
11. Facile preparation of nitrogen-doped graphene as a metal-free catalyst for oxygen reduction reaction. Lin Z; Song MK; Ding Y; Liu Y; Liu M; Wong CP Phys Chem Chem Phys; 2012 Mar; 14(10):3381-7. PubMed ID: 22307527 [TBL] [Abstract][Full Text] [Related]
12. Transition metal-depleted graphenes for electrochemical applications via reduction of CO₂ by lithium. Poh HL; Sofer Z; Luxa J; Pumera M Small; 2014 Apr; 10(8):1529-35. PubMed ID: 24344051 [TBL] [Abstract][Full Text] [Related]
13. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries. Zhou G; Yin LC; Wang DW; Li L; Pei S; Gentle IR; Li F; Cheng HM ACS Nano; 2013 Jun; 7(6):5367-75. PubMed ID: 23672616 [TBL] [Abstract][Full Text] [Related]
14. High-pressure hydrogenation of graphene: towards graphane. Poh HL; Šaněk F; Sofer Z; Pumera M Nanoscale; 2012 Nov; 4(22):7006-11. PubMed ID: 23041800 [TBL] [Abstract][Full Text] [Related]
15. Visible-light-enhanced interactions of hydrogen sulfide with composites of zinc (oxy)hydroxide with graphite oxide and graphene. Seredych M; Mabayoje O; Bandosz TJ Langmuir; 2012 Jan; 28(2):1337-46. PubMed ID: 22181932 [TBL] [Abstract][Full Text] [Related]
16. Capacitance of p- and n-doped graphenes is dominated by structural defects regardless of the dopant type. Ambrosi A; Poh HL; Wang L; Sofer Z; Pumera M ChemSusChem; 2014 Apr; 7(4):1102-6. PubMed ID: 24591401 [TBL] [Abstract][Full Text] [Related]
17. Structural Origin of the Activity in Mn3O4-Graphene Oxide Hybrid Electrocatalysts for the Oxygen Reduction Reaction. Wu KH; Zeng Q; Zhang B; Leng X; Su DS; Gentle IR; Wang DW ChemSusChem; 2015 Oct; 8(19):3331-9. PubMed ID: 26448527 [TBL] [Abstract][Full Text] [Related]
18. Transition metal (Mn, Fe, Co, Ni)-doped graphene hybrids for electrocatalysis. Toh RJ; Poh HL; Sofer Z; Pumera M Chem Asian J; 2013 Jun; 8(6):1295-300. PubMed ID: 23495248 [TBL] [Abstract][Full Text] [Related]
19. Uranium- and thorium-doped graphene for efficient oxygen and hydrogen peroxide reduction. Sofer Z; Jankovský O; Šimek P; Klímová K; Macková A; Pumera M ACS Nano; 2014 Jul; 8(7):7106-14. PubMed ID: 24979344 [TBL] [Abstract][Full Text] [Related]
20. One-pot synthesis of nitrogen and sulfur co-doped graphene as efficient metal-free electrocatalysts for the oxygen reduction reaction. Wang X; Wang J; Wang D; Dou S; Ma Z; Wu J; Tao L; Shen A; Ouyang C; Liu Q; Wang S Chem Commun (Camb); 2014 May; 50(37):4839-42. PubMed ID: 24687131 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]