BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 23656230)

  • 1. Rational design of Escherichia coli for L-isoleucine production.
    Park JH; Oh JE; Lee KH; Kim JY; Lee SY
    ACS Synth Biol; 2012 Nov; 1(11):532-40. PubMed ID: 23656230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Escherichia coli W as a new platform strain for the enhanced production of L-valine by systems metabolic engineering.
    Park JH; Jang YS; Lee JW; Lee SY
    Biotechnol Bioeng; 2011 May; 108(5):1140-7. PubMed ID: 21191998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-expression of feedback-resistant threonine dehydratase and acetohydroxy acid synthase increase L-isoleucine production in Corynebacterium glutamicum.
    Yin L; Hu X; Xu D; Ning J; Chen J; Wang X
    Metab Eng; 2012 Sep; 14(5):542-50. PubMed ID: 22771937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of an Escherichia coli ilvA mutant gene encoding feedback-resistant threonine deaminase on L-isoleucine production by Brevibacterium flavum.
    Hashiguchi K; Kojima H; Sato K; Sano K
    Biosci Biotechnol Biochem; 1997 Jan; 61(1):105-8. PubMed ID: 9028039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of an L-isoleucine overproducing strain of Escherichia coli K-12.
    Hashiguchi K; Takesada H; Suzuki E; Matsui H
    Biosci Biotechnol Biochem; 1999 Apr; 63(4):672-9. PubMed ID: 10361680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation.
    Park JH; Lee KH; Kim TY; Lee SY
    Proc Natl Acad Sci U S A; 2007 May; 104(19):7797-802. PubMed ID: 17463081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of 2-methyl-1-butanol in engineered Escherichia coli.
    Cann AF; Liao JC
    Appl Microbiol Biotechnol; 2008 Nov; 81(1):89-98. PubMed ID: 18758769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of isoleucine by overexpression of ilvA in a Corynebacterium lactofermentum threonine producer.
    Colón GE; Nguyen TT; Jetten MS; Sinskey AJ; Stephanopoulos G
    Appl Microbiol Biotechnol; 1995 Jul; 43(3):482-8. PubMed ID: 7632398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic redirection of carbon flow toward isoleucine by expressing a catabolic threonine dehydratase in a threonine-overproducing Corynebacterium glutamicum.
    Guillouet S; Rodal AA; An GH; Gorret N; Lessard PA; Sinskey AJ
    Appl Microbiol Biotechnol; 2001 Dec; 57(5-6):667-73. PubMed ID: 11778876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of a novel biochemical pathway for the biosynthesis of L-2-aminobutyric acid in Escherichia coli K12.
    Fotheringham IG; Grinter N; Pantaleone DP; Senkpeil RF; Taylor PP
    Bioorg Med Chem; 1999 Oct; 7(10):2209-13. PubMed ID: 10579528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of the Escherichia coli catabolic threonine dehydratase in Corynebacterium glutamicum and its effect on isoleucine production.
    Guillouet S; Rodal AA; An G; Lessard PA; Sinskey AJ
    Appl Environ Microbiol; 1999 Jul; 65(7):3100-7. PubMed ID: 10388709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of the L-valine biosynthesis pathway in Corynebacterium glutamicum using promoter activity modulation.
    Holátko J; Elisáková V; Prouza M; Sobotka M; Nesvera J; Pátek M
    J Biotechnol; 2009 Feb; 139(3):203-10. PubMed ID: 19121344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The contest for precursors: channelling L-isoleucine synthesis in Corynebacterium glutamicum without byproduct formation.
    Vogt M; Krumbach K; Bang WG; van Ooyen J; Noack S; Klein B; Bott M; Eggeling L
    Appl Microbiol Biotechnol; 2015 Jan; 99(2):791-800. PubMed ID: 25301583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Escherichia coli for the production of 1-propanol.
    Choi YJ; Park JH; Kim TY; Lee SY
    Metab Eng; 2012 Sep; 14(5):477-86. PubMed ID: 22871504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homocysteine toxicity in Escherichia coli is caused by a perturbation of branched-chain amino acid biosynthesis.
    Tuite NL; Fraser KR; O'byrne CP
    J Bacteriol; 2005 Jul; 187(13):4362-71. PubMed ID: 15968045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study and reengineering of the binding sites and allosteric regulation of biosynthetic threonine deaminase by isoleucine and valine in Escherichia coli.
    Chen L; Chen Z; Zheng P; Sun J; Zeng AP
    Appl Microbiol Biotechnol; 2013 Apr; 97(7):2939-49. PubMed ID: 22669632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Funtional study of gene relA in the expression of amino acid operons. III. The effect of the allelic state of gene relA on the derepression of the threonine and isoleucine-valine operons of Escherichia coli K-12].
    Zaigraeva GG; Shakulov RS; Gusiatiner MM; Livshits VA; Zhdanova NI
    Genetika; 1980; 16(2):205-11. PubMed ID: 6986324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of Escherichia coli isoleucine biosynthesis by isoleucine tetrazole.
    Willshaw GA; Tristram H
    J Bacteriol; 1975 Sep; 123(3):862-70. PubMed ID: 1099080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fermentative production of the unnatural amino acid L-2-aminobutyric acid based on metabolic engineering.
    Xu JM; Li JQ; Zhang B; Liu ZQ; Zheng YG
    Microb Cell Fact; 2019 Feb; 18(1):43. PubMed ID: 30819198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient approach to identify ilvA mutations reveals an amino-terminal catalytic domain in biosynthetic threonine deaminase from Escherichia coli.
    Fisher KE; Eisenstein E
    J Bacteriol; 1993 Oct; 175(20):6605-13. PubMed ID: 8407838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.