These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 23656565)
1. Dietary modification of the microbiome affects risk for cardiovascular disease. Mendelsohn AR; Larrick JW Rejuvenation Res; 2013 Jun; 16(3):241-4. PubMed ID: 23656565 [TBL] [Abstract][Full Text] [Related]
2. Gut microbiota-derived trimethylamine-N-oxide: A bridge between dietary fatty acid and cardiovascular disease? He M; Tan CP; Xu YJ; Liu Y Food Res Int; 2020 Dec; 138(Pt B):109812. PubMed ID: 33288187 [TBL] [Abstract][Full Text] [Related]
3. Gut microbiota metabolism of L-carnitine and cardiovascular risk. Ussher JR; Lopaschuk GD; Arduini A Atherosclerosis; 2013 Dec; 231(2):456-61. PubMed ID: 24267266 [TBL] [Abstract][Full Text] [Related]
4. Trimethylamine N-Oxide as a Potential Biomarker for Cardiovascular Disease: Its Association with Dietary Sources of Trimethylamine N-Oxide and Microbiota. Karaağaç Y Eurasian J Med; 2023 Oct; 55(1):S21-S26. PubMed ID: 39128035 [TBL] [Abstract][Full Text] [Related]
5. Trimethylamine Canyelles M; Tondo M; Cedó L; Farràs M; Escolà-Gil JC; Blanco-Vaca F Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30347638 [TBL] [Abstract][Full Text] [Related]
6. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. Romano KA; Vivas EI; Amador-Noguez D; Rey FE mBio; 2015 Mar; 6(2):e02481. PubMed ID: 25784704 [TBL] [Abstract][Full Text] [Related]
7. Dietary factors, gut microbiota, and serum trimethylamine-N-oxide associated with cardiovascular disease in the Hispanic Community Health Study/Study of Latinos. Mei Z; Chen GC; Wang Z; Usyk M; Yu B; Baeza YV; Humphrey G; Benitez RS; Li J; Williams-Nguyen JS; Daviglus ML; Hou L; Cai J; Zheng Y; Knight R; Burk RD; Boerwinkle E; Kaplan RC; Qi Q Am J Clin Nutr; 2021 Jun; 113(6):1503-1514. PubMed ID: 33709132 [TBL] [Abstract][Full Text] [Related]
8. Major Increase in Microbiota-Dependent Proatherogenic Metabolite TMAO One Year After Bariatric Surgery. Trøseid M; Hov JR; Nestvold TK; Thoresen H; Berge RK; Svardal A; Lappegård KT Metab Syndr Relat Disord; 2016 May; 14(4):197-201. PubMed ID: 27081744 [TBL] [Abstract][Full Text] [Related]
9. Trigonelline inhibits intestinal microbial metabolism of choline and its associated cardiovascular risk. Anwar S; Bhandari U; Panda BP; Dubey K; Khan W; Ahmad S J Pharm Biomed Anal; 2018 Sep; 159():100-112. PubMed ID: 29980011 [TBL] [Abstract][Full Text] [Related]
10. Dioxin-like pollutants increase hepatic flavin containing monooxygenase (FMO3) expression to promote synthesis of the pro-atherogenic nutrient biomarker trimethylamine N-oxide from dietary precursors. Petriello MC; Hoffman JB; Sunkara M; Wahlang B; Perkins JT; Morris AJ; Hennig B J Nutr Biochem; 2016 Jul; 33():145-53. PubMed ID: 27155921 [TBL] [Abstract][Full Text] [Related]
11. Trimethylamine N-Oxide (TMAO), Diet and Cardiovascular Disease. Thomas MS; Fernandez ML Curr Atheroscler Rep; 2021 Feb; 23(4):12. PubMed ID: 33594574 [TBL] [Abstract][Full Text] [Related]
12. Suppression of intestinal microbiota-dependent production of pro-atherogenic trimethylamine N-oxide by shifting L-carnitine microbial degradation. Kuka J; Liepinsh E; Makrecka-Kuka M; Liepins J; Cirule H; Gustina D; Loza E; Zharkova-Malkova O; Grinberga S; Pugovics O; Dambrova M Life Sci; 2014 Nov; 117(2):84-92. PubMed ID: 25301199 [TBL] [Abstract][Full Text] [Related]
13. Trimethylamine/Trimethylamine-N-Oxide as a Key Between Diet and Cardiovascular Diseases. He S; Jiang H; Zhuo C; Jiang W Cardiovasc Toxicol; 2021 Aug; 21(8):593-604. PubMed ID: 34003426 [TBL] [Abstract][Full Text] [Related]
14. Gut Microbiota in Vascular Disease: Therapeutic Target? Anbazhagan AN; Priyamvada S; Priyadarshini M Curr Vasc Pharmacol; 2017; 15(4):291-295. PubMed ID: 28056754 [TBL] [Abstract][Full Text] [Related]
16. The microbial gbu gene cluster links cardiovascular disease risk associated with red meat consumption to microbiota L-carnitine catabolism. Buffa JA; Romano KA; Copeland MF; Cody DB; Zhu W; Galvez R; Fu X; Ward K; Ferrell M; Dai HJ; Skye S; Hu P; Li L; Parlov M; McMillan A; Wei X; Nemet I; Koeth RA; Li XS; Wang Z; Sangwan N; Hajjar AM; Dwidar M; Weeks TL; Bergeron N; Krauss RM; Tang WHW; Rey FE; DiDonato JA; Gogonea V; Gerberick GF; Garcia-Garcia JC; Hazen SL Nat Microbiol; 2022 Jan; 7(1):73-86. PubMed ID: 34949826 [TBL] [Abstract][Full Text] [Related]
17. The contributory role of gut microbiota in cardiovascular disease. Tang WH; Hazen SL J Clin Invest; 2014 Oct; 124(10):4204-11. PubMed ID: 25271725 [TBL] [Abstract][Full Text] [Related]
18. Can diet modulate trimethylamine N-oxide (TMAO) production? What do we know so far? Coutinho-Wolino KS; de F Cardozo LFM; de Oliveira Leal V; Mafra D; Stockler-Pinto MB Eur J Nutr; 2021 Oct; 60(7):3567-3584. PubMed ID: 33533968 [TBL] [Abstract][Full Text] [Related]
19. L-Carnitine intake and high trimethylamine N-oxide plasma levels correlate with low aortic lesions in ApoE(-/-) transgenic mice expressing CETP. Collins HL; Drazul-Schrader D; Sulpizio AC; Koster PD; Williamson Y; Adelman SJ; Owen K; Sanli T; Bellamine A Atherosclerosis; 2016 Jan; 244():29-37. PubMed ID: 26584136 [TBL] [Abstract][Full Text] [Related]
20. Identification of TMAO-producer phenotype and host-diet-gut dysbiosis by carnitine challenge test in human and germ-free mice. Wu WK; Chen CC; Liu PY; Panyod S; Liao BY; Chen PC; Kao HL; Kuo HC; Kuo CH; Chiu THT; Chen RA; Chuang HL; Huang YT; Zou HB; Hsu CC; Chang TY; Lin CL; Ho CT; Yu HT; Sheen LY; Wu MS Gut; 2019 Aug; 68(8):1439-1449. PubMed ID: 30377191 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]