These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 23656617)
1. Characterization of low-temperature cofired ceramic tiles as platforms for gas chromatographic separations. Darko E; Thurbide KB; Gerhardt GC; Michienzi J Anal Chem; 2013 Jun; 85(11):5376-81. PubMed ID: 23656617 [TBL] [Abstract][Full Text] [Related]
2. μGC × μGC: comprehensive two-dimensional gas chromatographic separations with microfabricated components. Collin WR; Bondy A; Paul D; Kurabayashi K; Zellers ET Anal Chem; 2015 Feb; 87(3):1630-7. PubMed ID: 25535845 [TBL] [Abstract][Full Text] [Related]
3. Comprehensive two-dimensional gas chromatographic separations with a microfabricated thermal modulator. Serrano G; Paul D; Kim SJ; Kurabayashi K; Zellers ET Anal Chem; 2012 Aug; 84(16):6973-80. PubMed ID: 22860568 [TBL] [Abstract][Full Text] [Related]
4. Fast, high peak capacity separations in comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry. Fitz BD; Wilson RB; Parsons BA; Hoggard JC; Synovec RE J Chromatogr A; 2012 Nov; 1266():116-23. PubMed ID: 23084826 [TBL] [Abstract][Full Text] [Related]
5. Fast, high peak capacity separations in gas chromatography-time-of-flight mass spectrometry. Wilson RB; Hoggard JC; Synovec RE Anal Chem; 2012 May; 84(9):4167-73. PubMed ID: 22448931 [TBL] [Abstract][Full Text] [Related]
6. Single fiber-in-capillary annular column for gas chromatographic separation. Li P; Xu Z; Yang X; Bi W; Xiao D; Choi MM J Chromatogr A; 2009 Apr; 1216(15):3343-8. PubMed ID: 19268954 [TBL] [Abstract][Full Text] [Related]
7. Achieving high peak capacity production for gas chromatography and comprehensive two-dimensional gas chromatography by minimizing off-column peak broadening. Wilson RB; Siegler WC; Hoggard JC; Fitz BD; Nadeau JS; Synovec RE J Chromatogr A; 2011 May; 1218(21):3130-9. PubMed ID: 21255787 [TBL] [Abstract][Full Text] [Related]
8. Properties of water as a novel stationary phase in capillary gas chromatography. Gallant JA; Thurbide KB J Chromatogr A; 2014 Sep; 1359():247-54. PubMed ID: 25065923 [TBL] [Abstract][Full Text] [Related]
9. Investigation of high-speed gas chromatography using synchronized dual-valve injection and resistively heated temperature programming. Reid VR; McBrady AD; Synovec RE J Chromatogr A; 2007 May; 1148(2):236-43. PubMed ID: 17386929 [TBL] [Abstract][Full Text] [Related]
10. Sulfolane as a novel stationary phase for analytical separations by gas chromatography. Darko E; Thurbide KB Anal Chim Acta; 2022 Jan; 1189():339254. PubMed ID: 34815033 [TBL] [Abstract][Full Text] [Related]
11. Temperature Programming for High-Speed GC. Leonard C; Grall A; Sacks R Anal Chem; 1999 Jun; 71(11):2123-9. PubMed ID: 21662747 [TBL] [Abstract][Full Text] [Related]
12. Chiral 3D open-framework material Ni(D-cam)(H2O)2 used as GC stationary phase. Xie S; Wang B; Zhang X; Zhang J; Zhang M; Yuan L Chirality; 2014 Jan; 26(1):27-32. PubMed ID: 24408851 [TBL] [Abstract][Full Text] [Related]
13. High-speed, temperature programmable gas chromatography utilizing a microfabricated chip with an improved carbon nanotube stationary phase. Reid VR; Stadermann M; Bakajin O; Synovec RE Talanta; 2009 Feb; 77(4):1420-5. PubMed ID: 19084659 [TBL] [Abstract][Full Text] [Related]
14. High-speed cryo-focusing injection for gas chromatography: reduction of injection band broadening with concentration enrichment. Wilson RB; Fitz BD; Mannion BC; Lai T; Olund RK; Hoggard JC; Synovec RE Talanta; 2012 Aug; 97():9-15. PubMed ID: 22841041 [TBL] [Abstract][Full Text] [Related]
15. Temperature-programmed GC using silicon microfabricated columns with integrated heaters and temperature sensors. Reidy S; George D; Agah M; Sacks R Anal Chem; 2007 Apr; 79(7):2911-7. PubMed ID: 17311465 [TBL] [Abstract][Full Text] [Related]
16. Exploitation of a microporous organic polymer as a stationary phase for capillary gas chromatography. Lu C; Liu S; Xu J; Ding Y; Ouyang G Anal Chim Acta; 2016 Jan; 902():205-211. PubMed ID: 26703272 [TBL] [Abstract][Full Text] [Related]
17. Effect of first-dimension column film thickness on comprehensive two-dimensional gas chromatographic separation. Zhu Z; Harynuk J; Górecki T J Chromatogr A; 2006 Feb; 1105(1-2):17-24. PubMed ID: 16207491 [TBL] [Abstract][Full Text] [Related]
18. High-speed gas chromatography using synchronized dual-valve injection. Gross GM; Prazen BJ; Grate JW; Synovec RE Anal Chem; 2004 Jul; 76(13):3517-24. PubMed ID: 15228319 [TBL] [Abstract][Full Text] [Related]
19. A multidimensional micro gas chromatograph employing a parallel separation multi-column chip and stop-flow μGC × μGCs configuration. Chen BX; Hung TY; Jian RS; Lu CJ Lab Chip; 2013 Apr; 13(7):1333-41. PubMed ID: 23381092 [TBL] [Abstract][Full Text] [Related]
20. Comprehensive two-dimensional gas chromatographic separations with a temperature programmed microfabricated thermal modulator. Collin WR; Nuñovero N; Paul D; Kurabayashi K; Zellers ET J Chromatogr A; 2016 Apr; 1444():114-22. PubMed ID: 27036209 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]