BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 2365685)

  • 1. Steady-state nitric oxide concentrations during denitrification.
    Goretski J; Zafiriou OC; Hollocher TC
    J Biol Chem; 1990 Jul; 265(20):11535-8. PubMed ID: 2365685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans.
    Carlson CA; Ingraham JL
    Appl Environ Microbiol; 1983 Apr; 45(4):1247-53. PubMed ID: 6407395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Denitrification and its control.
    Ferguson SJ
    Antonie Van Leeuwenhoek; 1994; 66(1-3):89-110. PubMed ID: 7747942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of denitrification activity of Paracoccus denitrificans in continuous culture during aerobic-anaerobic changes.
    Baumann B; Snozzi M; Zehnder AJ; Van Der Meer JR
    J Bacteriol; 1996 Aug; 178(15):4367-74. PubMed ID: 8755862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of denitrification activity but not of mRNA induction in Paracoccus denitrificans by nitrite at a suboptimal pH.
    Baumann B; van der Meer JR; Snozzi M; Zehnder AJ
    Antonie Van Leeuwenhoek; 1997 Oct; 72(3):183-9. PubMed ID: 9403103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic regulation including anaerobic metabolism in Paracoccus denitrificans.
    Stouthamer AH
    J Bioenerg Biomembr; 1991 Apr; 23(2):163-85. PubMed ID: 2050653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide and nitrous oxide production and cycling during dissimilatory nitrite reduction by Pseudomonas perfectomarina.
    Zafiriou OC; Hanley QS; Snyder G
    J Biol Chem; 1989 Apr; 264(10):5694-9. PubMed ID: 2925629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of dentrification by Paracoccus denitrificans, Pseudomonas stutzeri and Pseudomonas aeruginosa.
    Błaszczyk M
    Acta Microbiol Pol; 1992; 41(3-4):203-10. PubMed ID: 1284849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of various sources of organic carbon and high nitrite and nitrate concentrations on the selection of denitrifying bacteria. II. Continuous cultures in packed bed reactors.
    Błaszczyk M
    Acta Microbiol Pol; 1983; 32(1):65-71. PubMed ID: 6194668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The energy-conserving nitric-oxide-reductase system in Paracoccus denitrificans. Distinction from the nitrite reductase that catalyses synthesis of nitric oxide and evidence from trapping experiments for nitric oxide as a free intermediate during denitrification.
    Carr GJ; Page MD; Ferguson SJ
    Eur J Biochem; 1989 Feb; 179(3):683-92. PubMed ID: 2920732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterotrophic nitrification among denitrifiers.
    Castignetti D; Hollocher TC
    Appl Environ Microbiol; 1984 Apr; 47(4):620-3. PubMed ID: 6721486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Respiration-dependent proton translocation and the transport of nitrate and nitrite in Paracoccus denitrificans and other denitrifying bacteria.
    Kristjansson JK; Walter B; Hollocher TC
    Biochemistry; 1978 Nov; 17(23):5014-9. PubMed ID: 31172
    [No Abstract]   [Full Text] [Related]  

  • 13. The kinetic and isotopic competence of nitric oxide as an intermediate in denitrification.
    Goretski J; Hollocher TC
    J Biol Chem; 1990 Jan; 265(2):889-95. PubMed ID: 2295624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional interactions between nitrite reductase and nitric oxide reductase from Paracoccus denitrificans.
    Albertsson I; Sjöholm J; Ter Beek J; Watmough NJ; Widengren J; Ädelroth P
    Sci Rep; 2019 Nov; 9(1):17234. PubMed ID: 31754148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The pathway of nitrogen and reductive enzymes of denitrification.
    Hollocher TC
    Antonie Van Leeuwenhoek; 1982; 48(6):531-44. PubMed ID: 6820251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalysis of nitrosyl transfer by denitrifying bacteria is facilitated by nitric oxide.
    Goretski J; Hollocher TC
    Biochem Biophys Res Commun; 1991 Mar; 175(3):901-5. PubMed ID: 2025262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The NtrYX Two-Component System of
    Olaya-Abril A; Luque-Almagro VM; Hidalgo-Carrillo J; Chicano-Gálvez E; Urbano FJ; Moreno-Vivián C; Richardson DJ; Roldán MD
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of copper, nitrate and carbon status on the emission of nitrous oxide by two species of bacteria with biochemically distinct denitrification pathways.
    Felgate H; Giannopoulos G; Sullivan MJ; Gates AJ; Clarke TA; Baggs E; Rowley G; Richardson DJ
    Environ Microbiol; 2012 Jul; 14(7):1788-800. PubMed ID: 22642644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide-dependent proton translocation in various denitrifiers.
    Shapleigh JP; Payne WJ
    J Bacteriol; 1985 Sep; 163(3):837-40. PubMed ID: 3928599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homeostatic control of nitric oxide (NO) at nanomolar concentrations in denitrifying bacteria - modelling and experimental determination of NO reductase kinetics in vivo in Paracoccus denitrificans.
    Hassan J; Bergaust LL; Molstad L; de Vries S; Bakken LR
    Environ Microbiol; 2016 Sep; 18(9):2964-78. PubMed ID: 26568410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.