These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 23656861)

  • 1. Performance-optimized clinical IMRT planning on modern CPUs.
    Ziegenhein P; Kamerling CP; Bangert M; Kunkel J; Oelfke U
    Phys Med Biol; 2013 Jun; 58(11):3705-15. PubMed ID: 23656861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-GPU implementation of a VMAT treatment plan optimization algorithm.
    Tian Z; Peng F; Folkerts M; Tan J; Jia X; Jiang SB
    Med Phys; 2015 Jun; 42(6):2841-52. PubMed ID: 26127037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parallel beamlet dose calculation via beamlet contexts in a distributed multi-GPU framework.
    Neph R; Ouyang C; Neylon J; Yang Y; Sheng K
    Med Phys; 2019 Aug; 46(8):3719-3733. PubMed ID: 31183871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A non-voxel-based broad-beam (NVBB) framework for IMRT treatment planning.
    Lu W
    Phys Med Biol; 2010 Dec; 55(23):7175-210. PubMed ID: 21081819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GPU-based ultrafast IMRT plan optimization.
    Men C; Gu X; Choi D; Majumdar A; Zheng Z; Mueller K; Jiang SB
    Phys Med Biol; 2009 Nov; 54(21):6565-73. PubMed ID: 19826201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GPU-based ultra-fast dose calculation using a finite size pencil beam model.
    Gu X; Choi D; Men C; Pan H; Majumdar A; Jiang SB
    Phys Med Biol; 2009 Oct; 54(20):6287-97. PubMed ID: 19794244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dosimetric comparison of helical tomotherapy treatment plans for total marrow irradiation created using GPU and CPU dose calculation engines.
    Nalichowski A; Burmeister J
    Med Phys; 2013 Jul; 40(7):071716. PubMed ID: 23822420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-GPU configuration of 4D intensity modulated radiation therapy inverse planning using global optimization.
    Hagan A; Sawant A; Folkerts M; Modiri A
    Phys Med Biol; 2018 Jan; 63(2):025028. PubMed ID: 29176059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inverse-optimized 3D conformal planning: minimizing complexity while achieving equivalence with beamlet IMRT in multiple clinical sites.
    Fraass BA; Steers JM; Matuszak MM; McShan DL
    Med Phys; 2012 Jun; 39(6):3361-74. PubMed ID: 22755717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GPU-based ultra-fast direct aperture optimization for online adaptive radiation therapy.
    Men C; Jia X; Jiang SB
    Phys Med Biol; 2010 Aug; 55(15):4309-19. PubMed ID: 20647601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A nonvoxel-based dose convolution/superposition algorithm optimized for scalable GPU architectures.
    Neylon J; Sheng K; Yu V; Chen Q; Low DA; Kupelian P; Santhanam A
    Med Phys; 2014 Oct; 41(10):101711. PubMed ID: 25281950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Speed optimized influence matrix processing in inverse treatment planning tools.
    Ziegenhein P; Wilkens JJ; Nill S; Ludwig T; Oelfke U
    Phys Med Biol; 2008 May; 53(9):N157-64. PubMed ID: 18401066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distributed and scalable optimization for robust proton treatment planning.
    Fu A; Taasti VT; Zarepisheh M
    Med Phys; 2023 Jan; 50(1):633-642. PubMed ID: 35907245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Full Monte Carlo-Based Biologic Treatment Plan Optimization System for Intensity Modulated Carbon Ion Therapy on Graphics Processing Unit.
    Qin N; Shen C; Tsai MY; Pinto M; Tian Z; Dedes G; Pompos A; Jiang SB; Parodi K; Jia X
    Int J Radiat Oncol Biol Phys; 2018 Jan; 100(1):235-243. PubMed ID: 29079118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A GPU-accelerated and Monte Carlo-based intensity modulated proton therapy optimization system.
    Ma J; Beltran C; Seum Wan Chan Tseung H; Herman MG
    Med Phys; 2014 Dec; 41(12):121707. PubMed ID: 25471954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voxel-based automatic multi-criteria optimization for intensity modulated radiation therapy.
    Mai Y; Kong F; Yang Y; Zhou L; Li Y; Song T
    Radiat Oncol; 2018 Dec; 13(1):241. PubMed ID: 30518381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automation and intensity modulated radiation therapy for individualized high-quality tangent breast treatment plans.
    Purdie TG; Dinniwell RE; Fyles A; Sharpe MB
    Int J Radiat Oncol Biol Phys; 2014 Nov; 90(3):688-95. PubMed ID: 25160607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High performance computing for deformable image registration: towards a new paradigm in adaptive radiotherapy.
    Samant SS; Xia J; Muyan-Ozcelik P; Owens JD
    Med Phys; 2008 Aug; 35(8):3546-53. PubMed ID: 18777915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intensity modulated proton therapy plan generation in under ten seconds.
    Matter M; Nenoff L; Meier G; Weber DC; Lomax AJ; Albertini F
    Acta Oncol; 2019 Oct; 58(10):1435-1439. PubMed ID: 31271095
    [No Abstract]   [Full Text] [Related]  

  • 20. Toward a web-based real-time radiation treatment planning system in a cloud computing environment.
    Na YH; Suh TS; Kapp DS; Xing L
    Phys Med Biol; 2013 Sep; 58(18):6525-40. PubMed ID: 24002571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.