These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 23656909)
1. Discovering chromatin motifs using FAIRE sequencing and the human diploid genome. Yang CC; Buck MJ; Chen MH; Chen YF; Lan HC; Chen JJ; Cheng C; Liu CC BMC Genomics; 2013 May; 14():310. PubMed ID: 23656909 [TBL] [Abstract][Full Text] [Related]
2. Global mapping of cell type-specific open chromatin by FAIRE-seq reveals the regulatory role of the NFI family in adipocyte differentiation. Waki H; Nakamura M; Yamauchi T; Wakabayashi K; Yu J; Hirose-Yotsuya L; Take K; Sun W; Iwabu M; Okada-Iwabu M; Fujita T; Aoyama T; Tsutsumi S; Ueki K; Kodama T; Sakai J; Aburatani H; Kadowaki T PLoS Genet; 2011 Oct; 7(10):e1002311. PubMed ID: 22028663 [TBL] [Abstract][Full Text] [Related]
3. High-throughput cis-regulatory element discovery in the vector mosquito Aedes aegypti. Behura SK; Sarro J; Li P; Mysore K; Severson DW; Emrich SJ; Duman-Scheel M BMC Genomics; 2016 May; 17():341. PubMed ID: 27161480 [TBL] [Abstract][Full Text] [Related]
4. Global Mapping of Open Chromatin Regulatory Elements by Formaldehyde-Assisted Isolation of Regulatory Elements Followed by Sequencing (FAIRE-seq). Bianco S; Rodrigue S; Murphy BD; Gévry N Methods Mol Biol; 2015; 1334():261-72. PubMed ID: 26404156 [TBL] [Abstract][Full Text] [Related]
5. Using combined evidence from replicates to evaluate ChIP-seq peaks. Jalili V; Matteucci M; Masseroli M; Morelli MJ Bioinformatics; 2015 Sep; 31(17):2761-9. PubMed ID: 25957351 [TBL] [Abstract][Full Text] [Related]
6. Alterations in chromatin accessibility and DNA methylation in clear cell renal cell carcinoma. Buck MJ; Raaijmakers LM; Ramakrishnan S; Wang D; Valiyaparambil S; Liu S; Nowak NJ; Pili R Oncogene; 2014 Oct; 33(41):4961-5. PubMed ID: 24186201 [TBL] [Abstract][Full Text] [Related]
7. Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Song L; Zhang Z; Grasfeder LL; Boyle AP; Giresi PG; Lee BK; Sheffield NC; Gräf S; Huss M; Keefe D; Liu Z; London D; McDaniell RM; Shibata Y; Showers KA; Simon JM; Vales T; Wang T; Winter D; Zhang Z; Clarke ND; Birney E; Iyer VR; Crawford GE; Lieb JD; Furey TS Genome Res; 2011 Oct; 21(10):1757-67. PubMed ID: 21750106 [TBL] [Abstract][Full Text] [Related]
8. Defining Regulatory Elements in the Human Genome Using Nucleosome Occupancy and Methylome Sequencing (NOMe-Seq). Rhie SK; Schreiner S; Farnham PJ Methods Mol Biol; 2018; 1766():209-229. PubMed ID: 29605855 [TBL] [Abstract][Full Text] [Related]
9. Occupancy maps of 208 chromatin-associated proteins in one human cell type. Partridge EC; Chhetri SB; Prokop JW; Ramaker RC; Jansen CS; Goh ST; Mackiewicz M; Newberry KM; Brandsmeier LA; Meadows SK; Messer CL; Hardigan AA; Coppola CJ; Dean EC; Jiang S; Savic D; Mortazavi A; Wold BJ; Myers RM; Mendenhall EM Nature; 2020 Jul; 583(7818):720-728. PubMed ID: 32728244 [TBL] [Abstract][Full Text] [Related]
10. Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel reporter assay. Kheradpour P; Ernst J; Melnikov A; Rogov P; Wang L; Zhang X; Alston J; Mikkelsen TS; Kellis M Genome Res; 2013 May; 23(5):800-11. PubMed ID: 23512712 [TBL] [Abstract][Full Text] [Related]
11. A step-by-step protocol for formaldehyde-assisted isolation of regulatory elements from Arabidopsis thaliana. Omidbakhshfard MA; Winck FV; Arvidsson S; Riaño-Pachón DM; Mueller-Roeber B J Integr Plant Biol; 2014 Jun; 56(6):527-38. PubMed ID: 24373132 [TBL] [Abstract][Full Text] [Related]
12. Genomic methods in profiling DNA accessibility and factor localization. Klein DC; Hainer SJ Chromosome Res; 2020 Mar; 28(1):69-85. PubMed ID: 31776829 [TBL] [Abstract][Full Text] [Related]
14. Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements). Giresi PG; Lieb JD Methods; 2009 Jul; 48(3):233-9. PubMed ID: 19303047 [TBL] [Abstract][Full Text] [Related]
16. Genome-wide open chromatin regions and their effects on the regulation of silk protein genes in Bombyx mori. Zhang Q; Cheng T; Jin S; Guo Y; Wu Y; Liu D; Xu X; Sun Y; Li Z; He H; Xia Q Sci Rep; 2017 Oct; 7(1):12919. PubMed ID: 29018289 [TBL] [Abstract][Full Text] [Related]
17. Mapping Genome-wide Accessible Chromatin in Primary Human T Lymphocytes by ATAC-Seq. Grbesa I; Tannenbaum M; Sarusi-Portuguez A; Schwartz M; Hakim O J Vis Exp; 2017 Nov; (129):. PubMed ID: 29155775 [TBL] [Abstract][Full Text] [Related]
18. Optimally choosing PWM motif databases and sequence scanning approaches based on ChIP-seq data. Dabrowski M; Dojer N; Krystkowiak I; Kaminska B; Wilczynski B BMC Bioinformatics; 2015 May; 16():140. PubMed ID: 25927199 [TBL] [Abstract][Full Text] [Related]
19. Mechanisms by which transcription factors gain access to target sequence elements in chromatin. Guertin MJ; Lis JT Curr Opin Genet Dev; 2013 Apr; 23(2):116-23. PubMed ID: 23266217 [TBL] [Abstract][Full Text] [Related]
20. Identification of determinants of differential chromatin accessibility through a massively parallel genome-integrated reporter assay. Hammelman J; Krismer K; Banerjee B; Gifford DK; Sherwood RI Genome Res; 2020 Oct; 30(10):1468-1480. PubMed ID: 32973041 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]