BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 23656958)

  • 1. Recalcitrant organic matter removal from textile wastewater by an aerobic cell-immobilized pellet column.
    Kim M; Han D; Cui F; Bae W
    Water Sci Technol; 2013; 67(9):2124-31. PubMed ID: 23656958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of textile dyeing effluent using activated sludge system to assess the removal efficiency.
    Malik A; Hussain M; Uddin F; Raza W; Hussain S; Habiba UE; Malik T; Ajmal Z
    Water Environ Res; 2021 Dec; 93(12):2931-2940. PubMed ID: 34570384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Color, organic matter and sulfate removal from textile effluents by anaerobic and aerobic processes.
    Amaral FM; Kato MT; Florêncio L; Gavazza S
    Bioresour Technol; 2014 Jul; 163():364-9. PubMed ID: 24813565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic-aerobic treatment of high-strength and recalcitrant textile dyeing effluents.
    Yao HY; Guo H; Shen F; Li T; Show DY; Ling M; Yan YG; Show KY; Lee DJ
    Bioresour Technol; 2023 Jul; 379():129060. PubMed ID: 37075851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential for enhancement of aerobic biological removal of recalcitrant organic matter in bleached pulp mill effluents.
    Mounteer AH; Souza LC; Silva CM
    Environ Technol; 2007 Feb; 28(2):157-64. PubMed ID: 17396409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Aerobic granular sludge for simultaneous COD and nitrogen removal at high carbon and nitrogen loading rates].
    Zhao YG; Huang J; Yang H
    Huan Jing Ke Xue; 2011 Nov; 32(11):3405-11. PubMed ID: 22295642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of kinetic constants of hybrid textile wastewater treatment system.
    Sandhya S; Sarayu K; Swaminathan K
    Bioresour Technol; 2008 Sep; 99(13):5793-7. PubMed ID: 18023341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decolorization and biodegradation of dye wastewaters by a facultative-aerobic process.
    Li Y; Xi DL
    Environ Sci Pollut Res Int; 2004; 11(6):372-7. PubMed ID: 15603526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of a fixed bed reactor with immobilized microorganisms for the removal of organic matter and phosphorous.
    Bustos-Terrones YA; Estrada-Vázquez R; Ramírez-Pereda B; Bustos-Terrones V; Rangel-Peraza JG
    Water Environ Res; 2020 Nov; 92(11):1956-1965. PubMed ID: 32358922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treatment of petroleum refinery wastewater containing heavily polluting substances in an aerobic submerged fixed-bed reactor.
    Vendramel S; Bassin JP; Dezotti M; Sant'Anna GL
    Environ Technol; 2015; 36(13-16):2052-9. PubMed ID: 25690305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous organic carbon and nitrogen removal in an anoxic-oxic activated sludge system under various operating conditions.
    Rasool K; Ahn DH; Lee DS
    Bioresour Technol; 2014 Jun; 162():373-8. PubMed ID: 24768910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultimate azo dye degradation in anaerobic/aerobic sequential processes.
    Sponza DT; Işik M
    Water Sci Technol; 2002; 45(12):271-8. PubMed ID: 12201112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequential anaerobic-aerobic treatment of pharmaceutical wastewater with high salinity.
    Shi X; Lefebvre O; Ng KK; Ng HY
    Bioresour Technol; 2014 Feb; 153():79-86. PubMed ID: 24355500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of organic loading rate on integrated bioreactor treating hypersaline mustard wastewater.
    Kang W; Chai H; Yang S; Du G; Zhou J; He Q
    Biotechnol Appl Biochem; 2016 Jul; 63(4):590-4. PubMed ID: 25989040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of an azo dye on the performance of an aerobic granular sludge sequencing batch reactor treating a simulated textile wastewater.
    Franca RD; Vieira A; Mata AM; Carvalho GS; Pinheiro HM; Lourenço ND
    Water Res; 2015 Nov; 85():327-36. PubMed ID: 26343991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance analysis of a continuous serpentine flow reactor for electrochemical oxidation of synthetic and real textile wastewater: Energy consumption, mass transfer coefficient and economic analysis.
    Pillai IMS; Gupta AK
    J Environ Manage; 2017 May; 193():524-531. PubMed ID: 28237221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sorption and release of organics by primary, anaerobic, and aerobic activated sludge mixed with raw municipal wastewater.
    Modin O; Saheb Alam S; Persson F; Wilén BM
    PLoS One; 2015; 10(3):e0119371. PubMed ID: 25768429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrogen removal from high organic loading wastewater in modified Ludzack-Ettinger configuration MBBR system.
    Torkaman M; Borghei SM; Tahmasebian S; Andalibi MR
    Water Sci Technol; 2015; 72(8):1274-82. PubMed ID: 26465296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of hydraulic retention time on granular sludge biomass in treating textile wastewater.
    Muda K; Aris A; Salim MR; Ibrahim Z; van Loosdrecht MC; Ahmad A; Nawahwi MZ
    Water Res; 2011 Oct; 45(16):4711-21. PubMed ID: 21714982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.