These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
419 related articles for article (PubMed ID: 23657153)
1. Epigenetic impact of dietary isothiocyanates in cancer chemoprevention. Gerhauser C Curr Opin Clin Nutr Metab Care; 2013 Jul; 16(4):405-10. PubMed ID: 23657153 [TBL] [Abstract][Full Text] [Related]
2. Dietary Sulforaphane in Cancer Chemoprevention: The Role of Epigenetic Regulation and HDAC Inhibition. Tortorella SM; Royce SG; Licciardi PV; Karagiannis TC Antioxid Redox Signal; 2015 Jun; 22(16):1382-424. PubMed ID: 25364882 [TBL] [Abstract][Full Text] [Related]
3. The impact of cruciferous vegetable isothiocyanates on histone acetylation and histone phosphorylation in bladder cancer. Abbaoui B; Telu KH; Lucas CR; Thomas-Ahner JM; Schwartz SJ; Clinton SK; Freitas MA; Mortazavi A J Proteomics; 2017 Mar; 156():94-103. PubMed ID: 28132875 [TBL] [Abstract][Full Text] [Related]
4. Sulforaphane absorption and histone deacetylase activity following single dosing of broccoli sprout supplement in normal dogs. Curran KM; Bracha S; Wong CP; Beaver LM; Stevens JF; Ho E Vet Med Sci; 2018 Nov; 4(4):357-363. PubMed ID: 30117668 [TBL] [Abstract][Full Text] [Related]
5. Reduced formation of depurinating estrogen-DNA adducts by sulforaphane or KEAP1 disruption in human mammary epithelial MCF-10A cells. Yang L; Zahid M; Liao Y; Rogan EG; Cavalieri EL; Davidson NE; Yager JD; Visvanathan K; Groopman JD; Kensler TW Carcinogenesis; 2013 Nov; 34(11):2587-92. PubMed ID: 23843041 [TBL] [Abstract][Full Text] [Related]
6. Anti-Carcinogenic Glucosinolates in Cruciferous Vegetables and Their Antagonistic Effects on Prevention of Cancers. Soundararajan P; Kim JS Molecules; 2018 Nov; 23(11):. PubMed ID: 30445746 [TBL] [Abstract][Full Text] [Related]
7. Absorption and chemopreventive targets of sulforaphane in humans following consumption of broccoli sprouts or a myrosinase-treated broccoli sprout extract. Atwell LL; Hsu A; Wong CP; Stevens JF; Bella D; Yu TW; Pereira CB; Löhr CV; Christensen JM; Dashwood RH; Williams DE; Shannon J; Ho E Mol Nutr Food Res; 2015 Mar; 59(3):424-33. PubMed ID: 25522265 [TBL] [Abstract][Full Text] [Related]
8. Cancer chemoprevention with dietary isothiocyanates mature for clinical translational research. Singh SV; Singh K Carcinogenesis; 2012 Oct; 33(10):1833-42. PubMed ID: 22739026 [TBL] [Abstract][Full Text] [Related]
9. The Role of Sulforaphane in Epigenetic Mechanisms, Including Interdependence between Histone Modification and DNA Methylation. Kaufman-Szymczyk A; Majewski G; Lubecka-Pietruszewska K; Fabianowska-Majewska K Int J Mol Sci; 2015 Dec; 16(12):29732-43. PubMed ID: 26703571 [TBL] [Abstract][Full Text] [Related]
10. Anticancer Activity of Sulforaphane: The Epigenetic Mechanisms and the Nrf2 Signaling Pathway. Su X; Jiang X; Meng L; Dong X; Shen Y; Xin Y Oxid Med Cell Longev; 2018; 2018():5438179. PubMed ID: 29977456 [TBL] [Abstract][Full Text] [Related]
11. Isothiocyanates as cancer chemopreventive agents: their biological activities and metabolism in rodents and humans. Conaway CC; Yang YM; Chung FL Curr Drug Metab; 2002 Jun; 3(3):233-55. PubMed ID: 12083319 [TBL] [Abstract][Full Text] [Related]
12. The molecular basis that unifies the metabolism, cellular uptake and chemopreventive activities of dietary isothiocyanates. Zhang Y Carcinogenesis; 2012 Jan; 33(1):2-9. PubMed ID: 22080571 [TBL] [Abstract][Full Text] [Related]
13. Dietary histone deacetylase inhibitors: from cells to mice to man. Dashwood RH; Ho E Semin Cancer Biol; 2007 Oct; 17(5):363-9. PubMed ID: 17555985 [TBL] [Abstract][Full Text] [Related]
14. Molecular targets of dietary phenethyl isothiocyanate and sulforaphane for cancer chemoprevention. Cheung KL; Kong AN AAPS J; 2010 Mar; 12(1):87-97. PubMed ID: 20013083 [TBL] [Abstract][Full Text] [Related]
15. New biomarkers for monitoring the levels of isothiocyanates in humans. Kumar A; Sabbioni G Chem Res Toxicol; 2010 Apr; 23(4):756-65. PubMed ID: 20131755 [TBL] [Abstract][Full Text] [Related]
16. HDAC turnover, CtIP acetylation and dysregulated DNA damage signaling in colon cancer cells treated with sulforaphane and related dietary isothiocyanates. Rajendran P; Kidane AI; Yu TW; Dashwood WM; Bisson WH; Löhr CV; Ho E; Williams DE; Dashwood RH Epigenetics; 2013 Jun; 8(6):612-23. PubMed ID: 23770684 [TBL] [Abstract][Full Text] [Related]
17. A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Myzak MC; Karplus PA; Chung FL; Dashwood RH Cancer Res; 2004 Aug; 64(16):5767-74. PubMed ID: 15313918 [TBL] [Abstract][Full Text] [Related]
18. Structural influence of isothiocyanates on the antioxidant response element (ARE)-mediated heme oxygenase-1 (HO-1) expression. Prawan A; Keum YS; Khor TO; Yu S; Nair S; Li W; Hu L; Kong AN Pharm Res; 2008 Apr; 25(4):836-44. PubMed ID: 17657593 [TBL] [Abstract][Full Text] [Related]
19. Modulation of histone deacetylase activity by dietary isothiocyanates and allyl sulfides: studies with sulforaphane and garlic organosulfur compounds. Nian H; Delage B; Ho E; Dashwood RH Environ Mol Mutagen; 2009 Apr; 50(3):213-21. PubMed ID: 19197985 [TBL] [Abstract][Full Text] [Related]
20. Differential effects of sulforaphane on histone deacetylases, cell cycle arrest and apoptosis in normal prostate cells versus hyperplastic and cancerous prostate cells. Clarke JD; Hsu A; Yu Z; Dashwood RH; Ho E Mol Nutr Food Res; 2011 Jul; 55(7):999-1009. PubMed ID: 21374800 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]