BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 23657281)

  • 21. A novel rat medial prefrontal cortical slice preparation to investigate synaptic transmission from amygdala to layer V prelimbic pyramidal neurons.
    Orozco-Cabal L; Pollandt S; Liu J; Vergara L; Shinnick-Gallagher P; Gallagher JP
    J Neurosci Methods; 2006 Mar; 151(2):148-58. PubMed ID: 16154203
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Convergence and interaction of hippocampal and amygdalar projections within the prefrontal cortex in the rat.
    Ishikawa A; Nakamura S
    J Neurosci; 2003 Nov; 23(31):9987-95. PubMed ID: 14602812
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gating of fear in prelimbic cortex by hippocampal and amygdala inputs.
    Sotres-Bayon F; Sierra-Mercado D; Pardilla-Delgado E; Quirk GJ
    Neuron; 2012 Nov; 76(4):804-12. PubMed ID: 23177964
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lateral Orbitofrontal Cortical Modulation on the Medial Prefrontal Cortex-Amygdala Pathway: Differential Regulation of Intra-Amygdala GABAA and GABAB Receptors.
    Chang CH
    Int J Neuropsychopharmacol; 2017 Jul; 20(7):602-610. PubMed ID: 28444246
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activity-dependent depression of medial prefrontal cortex inputs to accumbens neurons by the basolateral amygdala.
    McGinty VB; Grace AA
    Neuroscience; 2009 Sep; 162(4):1429-36. PubMed ID: 19460420
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiple long-range inputs evoke NMDA currents in prefrontal cortex fast-spiking interneurons.
    Bogart LJ; O'Donnell P
    Neuropsychopharmacology; 2018 Sep; 43(10):2101-2108. PubMed ID: 29483660
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Entorhinal cortex inhibits medial prefrontal cortex and modulates the activity states of electrophysiologically characterized pyramidal neurons in vivo.
    Valenti O; Grace AA
    Cereb Cortex; 2009 Mar; 19(3):658-74. PubMed ID: 18632738
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A neonatal ventral hippocampal lesion causes functional deficits in adult prefrontal cortical interneurons.
    Tseng KY; Lewis BL; Hashimoto T; Sesack SR; Kloc M; Lewis DA; O'Donnell P
    J Neurosci; 2008 Nov; 28(48):12691-9. PubMed ID: 19036962
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amygdala-dependent regulation of electrical properties of hippocampal interneurons in a model of schizophrenia.
    Gisabella B; Cunningham MG; Bolshakov VY; Benes FM
    Biol Psychiatry; 2009 Mar; 65(6):464-72. PubMed ID: 19027103
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons.
    Homayoun H; Moghaddam B
    J Neurosci; 2007 Oct; 27(43):11496-500. PubMed ID: 17959792
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Properties of excitatory synaptic responses in fast-spiking interneurons and pyramidal cells from monkey and rat prefrontal cortex.
    Povysheva NV; Gonzalez-Burgos G; Zaitsev AV; Kröner S; Barrionuevo G; Lewis DA; Krimer LS
    Cereb Cortex; 2006 Apr; 16(4):541-52. PubMed ID: 16033926
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Repeated amphetamine exposure disrupts dopaminergic modulation of amygdala-prefrontal circuitry and cognitive/emotional functioning.
    Tse MT; Cantor A; Floresco SB
    J Neurosci; 2011 Aug; 31(31):11282-94. PubMed ID: 21813688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibitory responses of rat basolateral amygdaloid neurons recorded in vitro.
    Washburn MS; Moises HC
    Neuroscience; 1992 Oct; 50(4):811-30. PubMed ID: 1333061
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of basolateral amygdala projection cells and interneurons using extracellular recordings.
    Likhtik E; Pelletier JG; Popescu AT; Paré D
    J Neurophysiol; 2006 Dec; 96(6):3257-65. PubMed ID: 17110739
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of metabotropic glutamate receptor 1 in the basolateral amygdala-driven prefrontal cortical deactivation in inflammatory pain in the rat.
    Luongo L; de Novellis V; Gatta L; Palazzo E; Vita D; Guida F; Giordano C; Siniscalco D; Marabese I; De Chiaro M; Boccella S; Rossi F; Maione S
    Neuropharmacology; 2013 Mar; 66():317-29. PubMed ID: 22796105
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Serotonergic modulation of neurotransmission in the rat basolateral amygdala.
    Rainnie DG
    J Neurophysiol; 1999 Jul; 82(1):69-85. PubMed ID: 10400936
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dopamine D1 and D4 receptor subtypes differentially modulate recurrent excitatory synapses in prefrontal cortical pyramidal neurons.
    Onn SP; Wang XB; Lin M; Grace AA
    Neuropsychopharmacology; 2006 Feb; 31(2):318-38. PubMed ID: 16052247
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cannabinoid transmission in the basolateral amygdala modulates fear memory formation via functional inputs to the prelimbic cortex.
    Tan H; Lauzon NM; Bishop SF; Chi N; Bechard M; Laviolette SR
    J Neurosci; 2011 Apr; 31(14):5300-12. PubMed ID: 21471365
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulation of basolateral amygdala neuronal firing and afferent drive by dopamine receptor activation in vivo.
    Rosenkranz JA; Grace AA
    J Neurosci; 1999 Dec; 19(24):11027-39. PubMed ID: 10594083
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The response of juxtacellular labeled GABA interneurons in the basolateral amygdaloid nucleus anterior part to 5-HT₂A/₂C receptor activation is decreased in rats with 6-hydroxydopamine lesions.
    Sun YN; Li LB; Zhang QJ; Hui YP; Wang Y; Zhang L; Chen L; Han LN; Guo Y; Liu J
    Neuropharmacology; 2013 Oct; 73():404-14. PubMed ID: 23827319
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.