These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 23657736)
1. Environmental assessment of 2-mercaptobenzimidazole based on the surface plasmon resonance band of gold nanoparticles. Rastegarzadeh S; Barkat Rezaei Z Environ Monit Assess; 2013 Nov; 185(11):9037-42. PubMed ID: 23657736 [TBL] [Abstract][Full Text] [Related]
2. A surface plasmon resonance sensing method for determining captopril based on in situ formation of silver nanoparticles using ascorbic acid. Rastegarzadeh S; Hashemi F Spectrochim Acta A Mol Biomol Spectrosc; 2014 Mar; 122():536-41. PubMed ID: 24334017 [TBL] [Abstract][Full Text] [Related]
3. Localized surface plasmon resonance of gold nanoparticles as colorimetric probes for determination of Isoniazid in pharmacological formulation. Zargar B; Hatamie A Spectrochim Acta A Mol Biomol Spectrosc; 2013 Apr; 106():185-9. PubMed ID: 23380146 [TBL] [Abstract][Full Text] [Related]
4. Surface plasmon resonance of gold nanoparticles as a colorimetric sensor for indirect detection of Cefixime. Masoudyfar Z; Elhami S Spectrochim Acta A Mol Biomol Spectrosc; 2019 Mar; 211():234-238. PubMed ID: 30553146 [TBL] [Abstract][Full Text] [Related]
5. Optical detection of phenolic compounds based on the surface plasmon resonance band of Au nanoparticles. Nezhad MR; Alimohammadi M; Tashkhourian J; Razavian SM Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):199-203. PubMed ID: 18222104 [TBL] [Abstract][Full Text] [Related]
6. Unmodified gold nanoparticles as a simple colorimetric probe for ramoplanin detection. Teepoo S; Chumsaeng P; Palasak K; Bousod N; Mhadbamrung N; Sae-lim P Talanta; 2013 Dec; 117():518-22. PubMed ID: 24209375 [TBL] [Abstract][Full Text] [Related]
7. Development and validation of colorimetric-assisted chemometrics methods based on the localized gold nanoparticles surface plasmon resonance for fast simultaneous estimation of anti-hepatitis C virus drugs in their combined dosage form: A comparative study with HPLC method. Naeimi MS; Sohrabi MR; Mortazavinik S J Pharm Biomed Anal; 2024 Sep; 248():116300. PubMed ID: 38924879 [TBL] [Abstract][Full Text] [Related]
8. Colorimetric determination of thiram based on formation of gold nanoparticles using ascorbic acid. Rastegarzadeh S; Abdali Sh Talanta; 2013 Jan; 104():22-6. PubMed ID: 23597883 [TBL] [Abstract][Full Text] [Related]
9. Development of a novel method for determination of mercury based on its inhibitory effect on horseradish peroxidase activity followed by monitoring the surface plasmon resonance peak of gold nanoparticles. Khodaveisi J; Shabani AM; Dadfarnia S; Moghadam MR; Hormozi-Nezhad MR Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 153():709-13. PubMed ID: 26474243 [TBL] [Abstract][Full Text] [Related]
10. Gold nanoparticle formation as an indicator of enzymatic methods: colorimetric L-phenylalanine determination. Martín-Barreiro A; de Marcos S; Galbán J Anal Bioanal Chem; 2022 Mar; 414(8):2641-2649. PubMed ID: 35064303 [TBL] [Abstract][Full Text] [Related]
11. Gold nanoparticle-based localized surface plasmon immunosensor for staphylococcal enterotoxin A (SEA) detection. Ben Haddada M; Hu D; Salmain M; Zhang L; Peng C; Wang Y; Liedberg B; Boujday S Anal Bioanal Chem; 2017 Oct; 409(26):6227-6234. PubMed ID: 28815272 [TBL] [Abstract][Full Text] [Related]
12. Ultrasensitive colorimetric detection of heparin based on self-assembly of gold nanoparticles on graphene oxide. Fu X; Chen L; Li J Analyst; 2012 Aug; 137(16):3653-8. PubMed ID: 22741162 [TBL] [Abstract][Full Text] [Related]
13. T7 bacteriophage induced changes of gold nanoparticle morphology: biopolymer capped gold nanoparticles as versatile probes for sensitive plasmonic biosensors. Kannan P; Los M; Los JM; Niedziolka-Jonsson J Analyst; 2014 Jul; 139(14):3563-71. PubMed ID: 24898163 [TBL] [Abstract][Full Text] [Related]
14. Colorimetric immunosensor for determination of prostate specific antigen using surface plasmon resonance band of colloidal triangular shape gold nanoparticles. Karami P; Khoshsafar H; Johari-Ahar M; Arduini F; Afkhami A; Bagheri H Spectrochim Acta A Mol Biomol Spectrosc; 2019 Nov; 222():117218. PubMed ID: 31174151 [TBL] [Abstract][Full Text] [Related]
15. In-situ microscale spectrophotometric determination of phenytoin by using branched gold nanoparticles. Khoubnasabjafari M; Samadi A; Jouyban A Mikrochim Acta; 2019 Jun; 186(7):422. PubMed ID: 31187298 [TBL] [Abstract][Full Text] [Related]
16. A label-free lead(II) ion sensor based on surface plasmon resonance and DNAzyme-gold nanoparticle conjugates. Wu H; Wang S; Li SFY; Bao Q; Xu Q Anal Bioanal Chem; 2020 Nov; 412(27):7525-7533. PubMed ID: 32829439 [TBL] [Abstract][Full Text] [Related]
17. Direct determination of urinary lysozyme using surface plasmon resonance light-scattering of gold nanoparticles. Wang X; Xu Y; Xu X; Hu K; Xiang M; Li L; Liu F; Li N Talanta; 2010 Jul; 82(2):693-7. PubMed ID: 20602956 [TBL] [Abstract][Full Text] [Related]
18. Surface plasmon resonance additivity of gold nanoparticles for colorimetric identification of cysteine and homocysteine in biological fluids. Gao H; Shen W; Lu C; Liang H; Yuan Q Talanta; 2013 Oct; 115():1-5. PubMed ID: 24054554 [TBL] [Abstract][Full Text] [Related]
19. Single-step detection of norovirus tuning localized surface plasmon resonance-induced optical signal between gold nanoparticles and quantum dots. Nasrin F; Chowdhury AD; Takemura K; Lee J; Adegoke O; Deo VK; Abe F; Suzuki T; Park EY Biosens Bioelectron; 2018 Dec; 122():16-24. PubMed ID: 30236804 [TBL] [Abstract][Full Text] [Related]
20. Determination of colloidal gold nanoparticle surface areas, concentrations, and sizes through quantitative ligand adsorption. Gadogbe M; Ansar SM; He G; Collier WE; Rodriguez J; Liu D; Chu IW; Zhang D Anal Bioanal Chem; 2013 Jan; 405(1):413-22. PubMed ID: 23092965 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]