These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 23657767)

  • 21. Label-free electrochemical monitoring of concentration enrichment during bipolar electrode focusing.
    Sheridan E; Hlushkou D; Anand RK; Laws DR; Tallarek U; Crooks RM
    Anal Chem; 2011 Sep; 83(17):6746-53. PubMed ID: 21815639
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dual-channel bipolar electrode focusing: simultaneous separation and enrichment of both anions and cations.
    Knust KN; Sheridan E; Anand RK; Crooks RM
    Lab Chip; 2012 Oct; 12(20):4107-14. PubMed ID: 22952054
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Compartmentalization of electrophoretically separated analytes in a multiphase microfluidic platform.
    Draper MC; Niu X; Cho S; James DI; Edel JB
    Anal Chem; 2012 Jul; 84(13):5801-8. PubMed ID: 22656086
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On-chip electric field driven electrochemical detection using a poly(dimethylsiloxane) microchannel with gold microband electrodes.
    Ordeig O; Godino N; del Campo J; Muñoz FX; Nikolajeff F; Nyholm L
    Anal Chem; 2008 May; 80(10):3622-32. PubMed ID: 18386910
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication and performance of a microfluidic traveling-wave electrophoresis system.
    Jo KD; Schiffbauer JE; Edwards BE; Lloyd Carroll R; Timperman AT
    Analyst; 2012 Feb; 137(4):875-83. PubMed ID: 22087468
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid method for design and fabrication of passive micromixers in microfluidic devices using a direct-printing process.
    Liu AL; He FY; Wang K; Zhou T; Lu Y; Xia XH
    Lab Chip; 2005 Sep; 5(9):974-8. PubMed ID: 16100582
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidic flow counterbalanced capillary electrophoresis.
    Xia L; Dutta D
    Analyst; 2013 Apr; 138(7):2126-33. PubMed ID: 23420375
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes.
    Lewpiriyawong N; Yang C; Lam YC
    Electrophoresis; 2010 Aug; 31(15):2622-31. PubMed ID: 20665920
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electric field gradient focusing with electro-osmotic flow to reduce analyte dispersion: Concept and numerical investigation.
    De Moor T; Lagae L; Van Hoof C; Liu C; Van Roy W
    J Chromatogr A; 2023 Jan; 1689():463726. PubMed ID: 36586281
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wireless bipolar electrode-based textile electrofluidics: towards novel micro-total-analysis systems.
    Khan JU; Ruland A; Sayyar S; Paull B; Chen J; Innis PC
    Lab Chip; 2021 Oct; 21(20):3979-3990. PubMed ID: 34636814
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A MEMS-based spiral channel dielectrophoretic chromatography system for cytometry applications.
    Yilmaz G; Ciftlik AT; Külah H
    Biotechnol J; 2011 Feb; 6(2):185-94. PubMed ID: 20949543
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Active mixing inside microchannels utilizing dynamic variation of gradient zeta potentials.
    Lin JL; Lee KH; Lee GB
    Electrophoresis; 2005 Dec; 26(24):4605-15. PubMed ID: 16358251
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage.
    Wang HY; Bhunia AK; Lu C
    Biosens Bioelectron; 2006 Dec; 22(5):582-8. PubMed ID: 16530400
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimization of microfluidic fuel cells using transport principles.
    Lee J; Lim KG; Palmore GT; Tripathi A
    Anal Chem; 2007 Oct; 79(19):7301-7. PubMed ID: 17727270
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DC-dielectrophoretic separation of microparticles using an oil droplet obstacle.
    Barbulovic-Nad I; Xuan X; Lee JS; Li D
    Lab Chip; 2006 Feb; 6(2):274-9. PubMed ID: 16450038
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two-dimensional bipolar electrochemistry.
    Fosdick SE; Crooks JA; Chang BY; Crooks RM
    J Am Chem Soc; 2010 Jul; 132(27):9226-7. PubMed ID: 20557049
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measuring rapid enzymatic kinetics by electrochemical method in droplet-based microfluidic devices with pneumatic valves.
    Han Z; Li W; Huang Y; Zheng B
    Anal Chem; 2009 Jul; 81(14):5840-5. PubMed ID: 19518139
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simplified current decoupler for microchip capillary electrophoresis with electrochemical and pulsed amperometric detection.
    Vickers JA; Henry CS
    Electrophoresis; 2005 Dec; 26(24):4641-7. PubMed ID: 16294295
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electropolymerization of Pyrrole-Based Ionic Liquids on Selected Wireless Bipolar Electrodes.
    Chen H; Anderson JL; Anand RK
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18087-18096. PubMed ID: 35417143
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of carbon dioxide on peak mode isotachophoresis: simultaneous preconcentration and separation.
    Khurana TK; Santiago JG
    Lab Chip; 2009 May; 9(10):1377-84. PubMed ID: 19417904
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.