These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 23657939)

  • 1. Affinity purification of T7 RNA transcripts with homogeneous ends using ARiBo and CRISPR tags.
    Salvail-Lacoste A; Di Tomasso G; Piette BL; Legault P
    RNA; 2013 Jul; 19(7):1003-14. PubMed ID: 23657939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Affinity purification of in vitro transcribed RNA with homogeneous ends using a 3'-ARiBo tag.
    Di Tomasso G; Salvail-Lacoste A; Bouvette J; Omichinski JG; Legault P
    Methods Enzymol; 2014; 549():49-84. PubMed ID: 25432744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Affinity purification of RNA using an ARiBo tag.
    Di Tomasso G; Dagenais P; Desjardins A; Rompré-Brodeur A; Delfosse V; Legault P
    Methods Mol Biol; 2012; 941():137-55. PubMed ID: 23065559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and function in promoter escape by T7 RNA polymerase.
    Martin CT; Esposito EA; Theis K; Gong P
    Prog Nucleic Acid Res Mol Biol; 2005; 80():323-47. PubMed ID: 16164978
    [No Abstract]   [Full Text] [Related]  

  • 5. The ARiBo tag: a reliable tool for affinity purification of RNAs under native conditions.
    Di Tomasso G; Lampron P; Dagenais P; Omichinski JG; Legault P
    Nucleic Acids Res; 2011 Feb; 39(3):e18. PubMed ID: 21071425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of the Strep-Tag and streptavidin for detection and purification of recombinant proteins.
    Skerra A; Schmidt TG
    Methods Enzymol; 2000; 326():271-304. PubMed ID: 11036648
    [No Abstract]   [Full Text] [Related]  

  • 7. T7 RNA polymerase-directed transcripts are processed in yeast and link 3' end formation to mRNA nuclear export.
    Dower K; Rosbash M
    RNA; 2002 May; 8(5):686-97. PubMed ID: 12022234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-pass transcription by T7 RNA polymerase.
    Passalacqua LFM; Dingilian AI; Lupták A
    RNA; 2020 Dec; 26(12):2062-2071. PubMed ID: 32958559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relaxed rotational and scrunching changes in P266L mutant of T7 RNA polymerase reduce short abortive RNAs while delaying transition into elongation.
    Tang GQ; Nandakumar D; Bandwar RP; Lee KS; Roy R; Ha T; Patel SS
    PLoS One; 2014; 9(3):e91859. PubMed ID: 24651161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A remarkably stable kissing-loop interaction defines substrate recognition by the Neurospora Varkud Satellite ribozyme.
    Bouchard P; Legault P
    RNA; 2014 Sep; 20(9):1451-64. PubMed ID: 25051972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of halted T7 RNA polymerase elongation complexes reveals multiple factors that contribute to stability.
    Mentesana PE; Chin-Bow ST; Sousa R; McAllister WT
    J Mol Biol; 2000 Oct; 302(5):1049-62. PubMed ID: 11183774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate generation for endonucleases of CRISPR/cas systems.
    Zoephel J; Dwarakanath S; Richter H; Plagens A; Randau L
    J Vis Exp; 2012 Sep; (67):. PubMed ID: 22986408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extended upstream A-T sequence increases T7 promoter strength.
    Tang GQ; Bandwar RP; Patel SS
    J Biol Chem; 2005 Dec; 280(49):40707-13. PubMed ID: 16215231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping of T7 RNA polymerase active site with novel reagents--oligonucleotides with reactive dialdehyde groups.
    Tunitskaya VL; Rusakova EE; Memelova LV; Kochetkov SN; Van Aerschot A; Herdewijn P; Efimtseva EV; Ermolinsky BS; Mikhailov SN
    FEBS Lett; 1999 Jan; 442(1):20-4. PubMed ID: 9923596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of SLV in SLI substrate recognition by the Neurospora VS ribozyme.
    Bouchard P; Lacroix-Labonté J; Desjardins G; Lampron P; Lisi V; Lemieux S; Major F; Legault P
    RNA; 2008 Apr; 14(4):736-48. PubMed ID: 18314503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA sequence, physics, and promoter function: Analysis of high-throughput data On T7 promoter variants activity.
    Orlov MA; Sorokin AA
    J Bioinform Comput Biol; 2020 Apr; 18(2):2040001. PubMed ID: 32404013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An in vitro autogene.
    Davidson EA; Meyer AJ; Ellefson JW; Levy M; Ellington AD
    ACS Synth Biol; 2012 May; 1(5):190-6. PubMed ID: 23651157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superior 5' homogeneity of RNA from ATP-initiated transcription under the T7 phi 2.5 promoter.
    Coleman TM; Wang G; Huang F
    Nucleic Acids Res; 2004 Jan; 32(1):e14. PubMed ID: 14744982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of inhibition of bacteriophage T7 RNA polymerase by T7 lysozyme.
    Zhang X; Studier FW
    J Mol Biol; 1997 May; 269(1):10-27. PubMed ID: 9192997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction and expression of a modular gene encoding bacteriophage T7 RNA polymerase.
    Arnaud N; Cheynet V; Oriol G; Mandrand B; Mallet F
    Gene; 1997 Oct; 199(1-2):149-56. PubMed ID: 9358051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.