BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

504 related articles for article (PubMed ID: 23657983)

  • 1. Sustained ibuprofen release using composite poly(lactic-co-glycolic acid)/titanium dioxide nanotubes from Ti implant surface.
    Jia H; Kerr LL
    J Pharm Sci; 2013 Jul; 102(7):2341-8. PubMed ID: 23657983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion.
    Gulati K; Ramakrishnan S; Aw MS; Atkins GJ; Findlay DM; Losic D
    Acta Biomater; 2012 Jan; 8(1):449-56. PubMed ID: 21930254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Composite microparticles with in vivo reduction of the burst release effect.
    Sheikh Hassan A; Sapin A; Lamprecht A; Emond E; El Ghazouani F; Maincent P
    Eur J Pharm Biopharm; 2009 Nov; 73(3):337-44. PubMed ID: 19651210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study on PLGA sustained release icariin/titanium dioxide nanotube composite coating.
    Wang FF; Li Y; Liu HC
    Eur Rev Med Pharmacol Sci; 2019 Feb; 23(3):911-917. PubMed ID: 30779055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradable ibuprofen-loaded PLGA microspheres for intraarticular administration. Effect of Labrafil addition on release in vitro.
    Fernández-Carballido A; Herrero-Vanrell R; Molina-Martínez IT; Pastoriza P
    Int J Pharm; 2004 Jul; 279(1-2):33-41. PubMed ID: 15234792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibacterial Effects and Biocompatibility of Titania Nanotubes with Octenidine Dihydrochloride/Poly(lactic-co-glycolic acid).
    Xu Z; Lai Y; Wu D; Huang W; Huang S; Zhou L; Chen J
    Biomed Res Int; 2015; 2015():836939. PubMed ID: 26090449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ibuprofen-loaded poly(lactic-co-glycolic acid) films for controlled drug release.
    Pang J; Luan Y; Li F; Cai X; Du J; Li Z
    Int J Nanomedicine; 2011; 6():659-65. PubMed ID: 21674021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local delivery of antimicrobial peptides using self-organized TiO2 nanotube arrays for peri-implant infections.
    Ma M; Kazemzadeh-Narbat M; Hui Y; Lu S; Ding C; Chen DD; Hancock RE; Wang R
    J Biomed Mater Res A; 2012 Feb; 100(2):278-85. PubMed ID: 22045618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surgical suture assembled with polymeric drug-delivery sheet for sustained, local pain relief.
    Lee JE; Park S; Park M; Kim MH; Park CG; Lee SH; Choi SY; Kim BH; Park HJ; Park JH; Heo CY; Choy YB
    Acta Biomater; 2013 Sep; 9(9):8318-27. PubMed ID: 23770220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled release and antibacterial activity of antibiotic-loaded electrospun halloysite/poly(lactic-co-glycolic acid) composite nanofibers.
    Qi R; Guo R; Zheng F; Liu H; Yu J; Shi X
    Colloids Surf B Biointerfaces; 2013 Oct; 110():148-55. PubMed ID: 23711785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sustained release of aspirin and vitamin C from titanium nanotubes: An experimental and stimulation study.
    Yang W; Deng C; Liu P; Hu Y; Luo Z; Cai K
    Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():139-147. PubMed ID: 27127038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiofrequency-triggered release for on-demand delivery of therapeutics from titania nanotube drug-eluting implants.
    Bariana M; Aw MS; Moore E; Voelcker NH; Losic D
    Nanomedicine (Lond); 2014; 9(8):1263-75. PubMed ID: 24359550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytotoxicity Evaluation of pH-Controlled Antitumor Drug Release System of Titanium Dioxide Nanotubes.
    Wang Y; Yuan L; Yao C; Fang J; Wu M
    J Nanosci Nanotechnol; 2015 Jun; 15(6):4143-8. PubMed ID: 26369023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gentamicin-Eluting Titanium Dioxide Nanotubes Grown on the Ultrafine-Grained Titanium.
    Nemati SH; Hadjizadeh A
    AAPS PharmSciTech; 2017 Aug; 18(6):2180-2187. PubMed ID: 28063103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alginate-PLL cell encapsulation system Co-entrapping PLGA-microspheres for the continuous release of anti-inflammatory drugs.
    Baruch L; Benny O; Gilert A; Ukobnik M; Ben Itzhak O; Machluf M
    Biomed Microdevices; 2009 Oct; 11(5):1103-13. PubMed ID: 19517239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size tuning of Ag-decorated TiO₂ nanotube arrays for improved bactericidal capacity of orthopedic implants.
    Esfandiari N; Simchi A; Bagheri R
    J Biomed Mater Res A; 2014 Aug; 102(8):2625-35. PubMed ID: 23982977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Titanium nanostructures for biomedical applications.
    Kulkarni M; Mazare A; Gongadze E; Perutkova Š; Kralj-Iglič V; Milošev I; Schmuki P; A Iglič ; Mozetič M
    Nanotechnology; 2015 Feb; 26(6):062002. PubMed ID: 25611515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing antimicrobial activity of TiO2/Ti by torularhodin bioinspired surface modification.
    Ungureanu C; Dumitriu C; Popescu S; Enculescu M; Tofan V; Popescu M; Pirvu C
    Bioelectrochemistry; 2016 Feb; 107():14-24. PubMed ID: 26414412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro evaluation of TiO2 nanotubes as cefuroxime carriers on orthopaedic implants for the prevention of periprosthetic joint infections.
    Chennell P; Feschet-Chassot E; Devers T; Awitor KO; Descamps S; Sautou V
    Int J Pharm; 2013 Oct; 455(1-2):298-305. PubMed ID: 23892151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antibacterial ability and angiogenic activity of Cu-Ti-O nanotube arrays.
    Zong M; Bai L; Liu Y; Wang X; Zhang X; Huang X; Hang R; Tang B
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():93-99. PubMed ID: 27987791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.