These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 23657998)
61. Evaluating childhood obesity: magnetic resonance-based quantification of abdominal adipose tissue and liver fat in children. Raschpichler MC; Sorge I; Hirsch W; Mende M; Sergeyev E; Kruber D; Koerner A; Schick F Rofo; 2012 Apr; 184(4):324-32. PubMed ID: 22322443 [TBL] [Abstract][Full Text] [Related]
62. Six-point DIXON and Magnetic Resonance Spectroscopy Techniques in Quantifying Bone Marrow Fat in Sickle Cell Disease. Lins CF; Salmon CEG; de Souza LA; Moraes RS; Silva-Pinto AC; Matos MA; Nogueira-Barbosa MH Acad Radiol; 2022 May; 29(5):e73-e81. PubMed ID: 34257024 [TBL] [Abstract][Full Text] [Related]
63. In vivo breath-hold (1) H MRS simultaneous estimation of liver proton density fat fraction, and T1 and T2 of water and fat, with a multi-TR, multi-TE sequence. Hamilton G; Middleton MS; Hooker JC; Haufe WM; Forbang NI; Allison MA; Loomba R; Sirlin CB J Magn Reson Imaging; 2015 Dec; 42(6):1538-43. PubMed ID: 26114603 [TBL] [Abstract][Full Text] [Related]
64. Chemical shift-based MRI to measure fat fractions in dystrophic skeletal muscle. Triplett WT; Baligand C; Forbes SC; Willcocks RJ; Lott DJ; DeVos S; Pollaro J; Rooney WD; Sweeney HL; Bönnemann CG; Wang DJ; Vandenborne K; Walter GA Magn Reson Med; 2014 Jul; 72(1):8-19. PubMed ID: 24006208 [TBL] [Abstract][Full Text] [Related]
65. Reproducibility of MRI-determined proton density fat fraction across two different MR scanner platforms. Kang GH; Cruite I; Shiehmorteza M; Wolfson T; Gamst AC; Hamilton G; Bydder M; Middleton MS; Sirlin CB J Magn Reson Imaging; 2011 Oct; 34(4):928-34. PubMed ID: 21769986 [TBL] [Abstract][Full Text] [Related]
67. Ultrashort TE MR imaging of bovine cortical bone: the effect of water loss on the T1 and T2* relaxation times. Kokabi N; Bae W; Diaz E; Chung CB; Bydder GM; Du J Magn Reson Med; 2011 Aug; 66(2):476-82. PubMed ID: 21360749 [TBL] [Abstract][Full Text] [Related]
68. Bone marrow fat is increased in chronic kidney disease by magnetic resonance spectroscopy. Moorthi RN; Fadel W; Eckert GJ; Ponsler-Sipes K; Moe SM; Lin C Osteoporos Int; 2015 Jun; 26(6):1801-7. PubMed ID: 25701052 [TBL] [Abstract][Full Text] [Related]
69. On the confounding effect of temperature on chemical shift-encoded fat quantification. Hernando D; Sharma SD; Kramer H; Reeder SB Magn Reson Med; 2014 Aug; 72(2):464-70. PubMed ID: 24123362 [TBL] [Abstract][Full Text] [Related]
70. Association of bone mineral density and fat fraction with magnetic susceptibility in inflamed trabecular bone. Bray TJP; Karsa A; Bainbridge A; Sakai N; Punwani S; Hall-Craggs MA; Shmueli K Magn Reson Med; 2019 May; 81(5):3094-3107. PubMed ID: 30615213 [TBL] [Abstract][Full Text] [Related]
71. Stability and sensitivity of water T Sinclair CD; Morrow JM; Janiczek RL; Evans MR; Rawah E; Shah S; Hanna MG; Reilly MM; Yousry TA; Thornton JS NMR Biomed; 2016 Dec; 29(12):1800-1812. PubMed ID: 27809381 [TBL] [Abstract][Full Text] [Related]
72. Gender and age groups interactions in the quantification of bone marrow fat content in lumbar spine using 3T MR spectroscopy: a multivariate analysis of covariance (Mancova). Roldan-Valadez E; Piña-Jimenez C; Favila R; Rios C Eur J Radiol; 2013 Nov; 82(11):e697-702. PubMed ID: 23938236 [TBL] [Abstract][Full Text] [Related]
73. UTE imaging with simultaneous water and fat signal suppression using a time-efficient multispoke inversion recovery pulse sequence. Carl M; Bydder GM; Du J Magn Reson Med; 2016 Aug; 76(2):577-82. PubMed ID: 26309221 [TBL] [Abstract][Full Text] [Related]
74. Liver fat volume fraction quantification with fat and water T1 and T 2* estimation and accounting for NMR multiple components in patients with chronic liver disease at 1.5 and 3.0 T. Leporq B; Ratiney H; Pilleul F; Beuf O Eur Radiol; 2013 Aug; 23(8):2175-86. PubMed ID: 23588583 [TBL] [Abstract][Full Text] [Related]
75. A hybrid (iron-fat-water) phantom for liver iron overload quantification in the presence of contaminating fat using magnetic resonance imaging. Mobini N; Malekzadeh M; Haghighatkhah H; Saligheh Rad H MAGMA; 2020 Jun; 33(3):385-392. PubMed ID: 31732894 [TBL] [Abstract][Full Text] [Related]
76. Quantification of vertebral bone marrow fat content using 3 Tesla MR spectroscopy: reproducibility, vertebral variation, and applications in osteoporosis. Li X; Kuo D; Schafer AL; Porzig A; Link TM; Black D; Schwartz AV J Magn Reson Imaging; 2011 Apr; 33(4):974-9. PubMed ID: 21448966 [TBL] [Abstract][Full Text] [Related]
77. Accuracy of Liver Fat Quantification With Advanced CT, MRI, and Ultrasound Techniques: Prospective Comparison With MR Spectroscopy. Kramer H; Pickhardt PJ; Kliewer MA; Hernando D; Chen GH; Zagzebski JA; Reeder SB AJR Am J Roentgenol; 2017 Jan; 208(1):92-100. PubMed ID: 27726414 [TBL] [Abstract][Full Text] [Related]
78. A comparison of liver fat content as determined by magnetic resonance imaging-proton density fat fraction and MRS versus liver histology in non-alcoholic fatty liver disease. Idilman IS; Keskin O; Celik A; Savas B; Elhan AH; Idilman R; Karcaaltincaba M Acta Radiol; 2016 Mar; 57(3):271-8. PubMed ID: 25855666 [TBL] [Abstract][Full Text] [Related]
79. Quantification of low fat contents: a comparison of MR imaging and spectroscopy methods at 1.5 and 3 T. Månsson S; Peterson P; Johansson E Magn Reson Imaging; 2012 Dec; 30(10):1461-7. PubMed ID: 22835942 [TBL] [Abstract][Full Text] [Related]
80. Characterization of trabecular bone density with ultra-short echo-time MRI at 1.5, 3.0 and 7.0 T--comparison with micro-computed tomography. Wurnig MC; Calcagni M; Kenkel D; Vich M; Weiger M; Andreisek G; Wehrli FW; Boss A NMR Biomed; 2014 Oct; 27(10):1159-66. PubMed ID: 25088271 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]