These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 23658001)

  • 1. Mechanized silica nanoparticles based on pillar[5]arenes for on-command cargo release.
    Sun YL; Yang YW; Chen DX; Wang G; Zhou Y; Wang CY; Stoddart JF
    Small; 2013 Oct; 9(19):3224-9. PubMed ID: 23658001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gated Materials: Installing Macrocyclic Arenes-Based Supramolecular Nanovalves on Porous Nanomaterials for Controlled Cargo Release.
    Lou XY; Li YP; Yang YW
    Biotechnol J; 2019 Jan; 14(1):e1800354. PubMed ID: 30457707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH-operated nanopistons on the surfaces of mesoporous silica nanoparticles.
    Zhao YL; Li Z; Kabehie S; Botros YY; Stoddart JF; Zink JI
    J Am Chem Soc; 2010 Sep; 132(37):13016-25. PubMed ID: 20799689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme-responsive supramolecular nanovalves crafted by mesoporous silica nanoparticles and choline-sulfonatocalix[4]arene [2]pseudorotaxanes for controlled cargo release.
    Sun YL; Zhou Y; Li QL; Yang YW
    Chem Commun (Camb); 2013 Oct; 49(79):9033-5. PubMed ID: 23982479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled-access hollow mechanized silica nanocontainers.
    Du L; Liao S; Khatib HA; Stoddart JF; Zink JI
    J Am Chem Soc; 2009 Oct; 131(42):15136-42. PubMed ID: 19799420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetylcholine-triggered cargo release from supramolecular nanovalves based on different macrocyclic receptors.
    Zhou Y; Tan LL; Li QL; Qiu XL; Qi AD; Tao Y; Yang YW
    Chemistry; 2014 Mar; 20(11):2998-3004. PubMed ID: 24585543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and conformational characteristics of alkyl-substituted pillar[5]arenes.
    Ogoshi T; Kitajima K; Aoki T; Fujinami S; Yamagishi TA; Nakamoto Y
    J Org Chem; 2010 May; 75(10):3268-73. PubMed ID: 20397710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MOF-based multi-stimuli-responsive supramolecular nanoplatform equipped with macrocycle nanovalves for plant growth regulation.
    Yang J; Dai D; Cai Z; Liu YQ; Qin JC; Wang Y; Yang YW
    Acta Biomater; 2021 Oct; 134():664-673. PubMed ID: 34329784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quadruple Stimuli-Responsive Mechanized Silica Nanoparticles: A Promising Multifunctional Nanomaterial for Diverse Applications.
    Ding C; Tong L; Fu J
    Chemistry; 2017 Oct; 23(60):15041-15045. PubMed ID: 28940669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multistimuli Responsive Core-Shell Nanoplatform Constructed from Fe
    Wu MX; Gao J; Wang F; Yang J; Song N; Jin X; Mi P; Tian J; Luo J; Liang F; Yang YW
    Small; 2018 Apr; 14(17):e1704440. PubMed ID: 29611291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conversion from pillar[5]arene to pillar[6-15]arenes by ring expansion and encapsulation of C60 by pillar[n]arenes with nanosize cavities.
    Ogoshi T; Ueshima N; Sakakibara F; Yamagishi TA; Haino T
    Org Lett; 2014 Jun; 16(11):2896-9. PubMed ID: 24840504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decasubstituted Pillar[5]arene Derivatives Containing
    Sultanaev V; Yakimova L; Nazarova A; Mostovaya O; Sedov I; Davletshin D; Gilyazova E; Bulatov E; Li ZT; Zhang DW; Stoikov I
    Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimuli-responsive metal-organic frameworks gated by pillar[5]arene supramolecular switches.
    Tan LL; Li H; Qiu YC; Chen DX; Wang X; Pan RY; Wang Y; Zhang SX; Wang B; Yang YW
    Chem Sci; 2015 Mar; 6(3):1640-1644. PubMed ID: 30154997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clickable di- and tetrafunctionalized pillar[n]arenes (n = 5, 6) by oxidation-reduction of pillar[n]arene units.
    Ogoshi T; Yamafuji D; Kotera D; Aoki T; Fujinami S; Yamagishi TA
    J Org Chem; 2012 Dec; 77(24):11146-52. PubMed ID: 23198965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pillar[5]- and pillar[6]arene-based supramolecular assemblies built by using their cavity-size-dependent host-guest interactions.
    Ogoshi T; Yamagishi T
    Chem Commun (Camb); 2014 May; 50(37):4776-87. PubMed ID: 24643742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poly(propylene imine) dendrimer caps on mesoporous silica nanoparticles for redox-responsive release: smaller is better.
    Nadrah P; Porta F; Planinšek O; Kros A; Gaberšček M
    Phys Chem Chem Phys; 2013 Jul; 15(26):10740-8. PubMed ID: 23689395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-operated mechanized nanoparticles.
    Ferris DP; Zhao YL; Khashab NM; Khatib HA; Stoddart JF; Zink JI
    J Am Chem Soc; 2009 Feb; 131(5):1686-8. PubMed ID: 19159224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supramolecular vesicles based on pillar[n]arenes: design, construction, and applications.
    Xiao T; Zhong W; Xu L; Sun XQ; Hu XY; Wang L
    Org Biomol Chem; 2019 Feb; 17(6):1336-1350. PubMed ID: 30638249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled release of cargo molecules from hollow mesoporous silica nanoparticles based on acid and base dual-responsive cucurbit[7]uril pseudorotaxanes.
    Chen T; Yang N; Fu J
    Chem Commun (Camb); 2013 Jul; 49(58):6555-7. PubMed ID: 23760403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. pH- and photo-switched release of guest molecules from mesoporous silica supports.
    Aznar E; Marcos MD; Martínez-Máñez R; Sancenón F; Soto J; Amorós P; Guillem C
    J Am Chem Soc; 2009 May; 131(19):6833-43. PubMed ID: 19402643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.