These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 23658171)

  • 41. Volitional control of individual neurons in the human brain.
    Patel K; Katz CN; Kalia SK; Popovic MR; Valiante TA
    Brain; 2021 Dec; 144(12):3651-3663. PubMed ID: 34623400
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Motor unit properties after operant conditioning of rat H-reflex.
    Carp JS; Chen XY; Sheikh H; Wolpaw JR
    Exp Brain Res; 2001 Oct; 140(3):382-6. PubMed ID: 11681314
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Single forebrain neurons represent interval timing and reward amount during response scheduling.
    Kalenscher T; Ohmann T; Windmann S; Freund N; Güntürkün O
    Eur J Neurosci; 2006 Nov; 24(10):2923-31. PubMed ID: 17156215
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functional properties of single neurons in the face primary motor cortex of the primate. II. Relations with trained orofacial motor behavior.
    Murray GM; Sessle BJ
    J Neurophysiol; 1992 Mar; 67(3):759-74. PubMed ID: 1578253
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Appearance of functional connections between neurons resulting from changes in the frequency of their spike activity during the performance by animals of conditioned-reflex food-procuring responses.
    Bogdanov AV; Galashina AG
    Neurosci Behav Physiol; 1997; 27(2):97-104. PubMed ID: 9168477
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Selective delay activity in the medial prefrontal cortex of the rat: contribution of sensorimotor information and contingency.
    Cowen SL; McNaughton BL
    J Neurophysiol; 2007 Jul; 98(1):303-16. PubMed ID: 17507507
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inducing γ oscillations and precise spike synchrony by operant conditioning via brain-machine interface.
    Engelhard B; Ozeri N; Israel Z; Bergman H; Vaadia E
    Neuron; 2013 Jan; 77(2):361-75. PubMed ID: 23352171
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Environmental enrichment alters neuronal processing in the nucleus accumbens core during appetitive conditioning.
    Wood DA; Rebec GV
    Brain Res; 2009 Mar; 1259():59-67. PubMed ID: 19135429
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Functional properties of single neurons in the face primary motor cortex of the primate. III. Relations with different directions of trained tongue protrusion.
    Murray GM; Sessle BJ
    J Neurophysiol; 1992 Mar; 67(3):775-85. PubMed ID: 1578254
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reward-related neuronal activity in the rat superior colliculus.
    Weldon DA; DiNieri JA; Silver MR; Thomas AA; Wright RE
    Behav Brain Res; 2007 Feb; 177(1):160-4. PubMed ID: 17145084
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Operant conditioning of tonic firing patterns from precentral neurons in monkey neocortex.
    Wyler AR; Finch CA
    Brain Res; 1978 May; 146(1):51-68. PubMed ID: 417757
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Licking-induced synchrony in the taste-reward circuit improves cue discrimination during learning.
    Gutierrez R; Simon SA; Nicolelis MA
    J Neurosci; 2010 Jan; 30(1):287-303. PubMed ID: 20053910
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Instrumental conditioning of the activity of putative command neurons in the mollusk Helix.
    Tsitolovsky LE; Shvedov A
    Brain Res; 1997 Jan; 745(1-2):271-82. PubMed ID: 9037419
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Learning-related facilitation of rhinal interactions by medial prefrontal inputs.
    Paz R; Bauer EP; Paré D
    J Neurosci; 2007 Jun; 27(24):6542-51. PubMed ID: 17567815
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Encoding of movement fragments in the motor cortex.
    Hatsopoulos NG; Xu Q; Amit Y
    J Neurosci; 2007 May; 27(19):5105-14. PubMed ID: 17494696
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reward-modulated motor information in identified striatum neurons.
    Isomura Y; Takekawa T; Harukuni R; Handa T; Aizawa H; Takada M; Fukai T
    J Neurosci; 2013 Jun; 33(25):10209-20. PubMed ID: 23785137
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Stimulus-driven changes in sensorimotor behavior and neuronal functional connectivity application to brain-machine interfaces and neurorehabilitation.
    Rebesco JM; Miller LE
    Prog Brain Res; 2011; 192():83-102. PubMed ID: 21763520
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Differential Activation of Fast-Spiking and Regular-Firing Neuron Populations During Movement and Reward in the Dorsal Medial Frontal Cortex.
    Insel N; Barnes CA
    Cereb Cortex; 2015 Sep; 25(9):2631-47. PubMed ID: 24700585
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Large-scale analysis reveals populational contributions of cortical spike rate and synchrony to behavioural functions.
    Kimura R; Saiki A; Fujiwara-Tsukamoto Y; Sakai Y; Isomura Y
    J Physiol; 2017 Jan; 595(1):385-413. PubMed ID: 27488936
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Theta-band phase locking of orbitofrontal neurons during reward expectancy.
    van Wingerden M; Vinck M; Lankelma J; Pennartz CM
    J Neurosci; 2010 May; 30(20):7078-87. PubMed ID: 20484650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.