BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 23658223)

  • 1. The effect of LacI autoregulation on the performance of the lactose utilization system in Escherichia coli.
    Semsey S; Jauffred L; Csiszovszki Z; Erdossy J; Stéger V; Hansen S; Krishna S
    Nucleic Acids Res; 2013 Jul; 41(13):6381-90. PubMed ID: 23658223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive evolution of the lactose utilization network in experimentally evolved populations of Escherichia coli.
    Quan S; Ray JC; Kwota Z; Duong T; Balázsi G; Cooper TF; Monds RD
    PLoS Genet; 2012 Jan; 8(1):e1002444. PubMed ID: 22253602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Escherichia coli σ
    Schuller A; Cserjan-Puschmann M; Tauer C; Jarmer J; Wagenknecht M; Reinisch D; Grabherr R; Striedner G
    Microb Cell Fact; 2020 Mar; 19(1):58. PubMed ID: 32138729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bistability and Nonmonotonic Induction of the lac Operon in the Natural Lactose Uptake System.
    Zander D; Samaga D; Straube R; Bettenbrock K
    Biophys J; 2017 May; 112(9):1984-1996. PubMed ID: 28494968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial promoter repression by DNA looping without protein-protein binding competition.
    Becker NA; Greiner AM; Peters JP; Maher LJ
    Nucleic Acids Res; 2014 May; 42(9):5495-504. PubMed ID: 24598256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel insights from hybrid LacI/GalR proteins: family-wide functional attributes and biologically significant variation in transcription repression.
    Meinhardt S; Manley MW; Becker NA; Hessman JA; Maher LJ; Swint-Kruse L
    Nucleic Acids Res; 2012 Nov; 40(21):11139-54. PubMed ID: 22965134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SsrA-mediated tagging and proteolysis of LacI and its role in the regulation of lac operon.
    Abo T; Inada T; Ogawa K; Aiba H
    EMBO J; 2000 Jul; 19(14):3762-9. PubMed ID: 10899129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altering residues N125 and D149 impacts sugar effector binding and allosteric parameters in Escherichia coli lactose repressor.
    Xu J; Liu S; Chen M; Ma J; Matthews KS
    Biochemistry; 2011 Oct; 50(42):9002-13. PubMed ID: 21928765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of transcriptional repression at a bacterial promoter by analysis of single molecules.
    Sanchez A; Osborne ML; Friedman LJ; Kondev J; Gelles J
    EMBO J; 2011 Aug; 30(19):3940-6. PubMed ID: 21829165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Switching off: The phenotypic transition to the uninduced state of the lactose uptake pathway.
    Bhogale PM; Sorg RA; Veening JW; Berg J
    Biophys J; 2022 Jan; 121(2):183-192. PubMed ID: 34953812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA supercoiling, a critical signal regulating the basal expression of the lac operon in Escherichia coli.
    Fulcrand G; Dages S; Zhi X; Chapagain P; Gerstman BS; Dunlap D; Leng F
    Sci Rep; 2016 Jan; 6():19243. PubMed ID: 26763930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A stochastic single-molecule event triggers phenotype switching of a bacterial cell.
    Choi PJ; Cai L; Frieda K; Xie XS
    Science; 2008 Oct; 322(5900):442-6. PubMed ID: 18927393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the sequence-function relationship in transcriptional regulation by the lac O1 operator.
    Maity TS; Jha RK; Strauss CE; Dunbar J
    FEBS J; 2012 Jul; 279(14):2534-43. PubMed ID: 22594825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo tests of thermodynamic models of transcription repressor function.
    Tungtur S; Skinner H; Zhan H; Swint-Kruse L; Beckett D
    Biophys Chem; 2011 Nov; 159(1):142-51. PubMed ID: 21715082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological innovation in the functional landscape of a model regulator, or the lactose operon repressor.
    Danchin A
    C R Biol; 2021 Jul; 344(2):111-126. PubMed ID: 34213850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feedback regulation of Lac repressor expression in Escherichia coli.
    Oehler S
    J Bacteriol; 2009 Aug; 191(16):5301-3. PubMed ID: 19502396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-guided approach to site-specific fluorophore labeling of the lac repressor LacI.
    Kipper K; Eremina N; Marklund E; Tubasum S; Mao G; Lehmann LC; Elf J; Deindl S
    PLoS One; 2018; 13(6):e0198416. PubMed ID: 29856839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct observation of a 91 bp LacI-mediated, negatively supercoiled DNA loop by atomic force microscope.
    Fulcrand G; Chapagain P; Dunlap D; Leng F
    FEBS Lett; 2016 Mar; 590(5):613-8. PubMed ID: 26878689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Establishment of a low-dosage-IPTG inducible expression system construction method in Escherichia coli.
    Zhao M; Tao XY; Wang FQ; Ren YH; Wei DZ
    J Basic Microbiol; 2018 Sep; 58(9):806-810. PubMed ID: 29962051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteins mediating DNA loops effectively block transcription.
    Vörös Z; Yan Y; Kovari DT; Finzi L; Dunlap D
    Protein Sci; 2017 Jul; 26(7):1427-1438. PubMed ID: 28295806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.