These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 23658508)

  • 1. A kinetic platform to determine the fate of nitric oxide in Escherichia coli.
    Robinson JL; Brynildsen MP
    PLoS Comput Biol; 2013; 9(5):e1003049. PubMed ID: 23658508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery and dissection of metabolic oscillations in the microaerobic nitric oxide response network of Escherichia coli.
    Robinson JL; Brynildsen MP
    Proc Natl Acad Sci U S A; 2016 Mar; 113(12):E1757-66. PubMed ID: 26951670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying Nitric Oxide Flux Distributions.
    Sivaloganathan DM; Wan X; Brynildsen MP
    Methods Mol Biol; 2020; 2088():161-188. PubMed ID: 31893374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Kinetic Platform to Determine the Fate of Hydrogen Peroxide in Escherichia coli.
    Adolfsen KJ; Brynildsen MP
    PLoS Comput Biol; 2015 Nov; 11(11):e1004562. PubMed ID: 26545295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated network analysis identifies how ArcAB enables metabolic oscillations in the nitric oxide detoxification network of Escherichia coli.
    Sacco SA; Adolfsen KJ; Brynildsen MP
    Biotechnol J; 2017 Aug; 12(8):. PubMed ID: 28449226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data.
    Khodayari A; Zomorrodi AR; Liao JC; Maranas CD
    Metab Eng; 2014 Sep; 25():50-62. PubMed ID: 24928774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extraction of elementary rate constants from global network analysis of E. coli central metabolism.
    Zhao J; Ridgway D; Broderick G; Kovalenko A; Ellison M
    BMC Syst Biol; 2008 May; 2():41. PubMed ID: 18462493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints.
    Chakrabarti A; Miskovic L; Soh KC; Hatzimanikatis V
    Biotechnol J; 2013 Sep; 8(9):1043-57. PubMed ID: 23868566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an accurate kinetic model for the central carbon metabolism of Escherichia coli.
    Jahan N; Maeda K; Matsuoka Y; Sugimoto Y; Kurata H
    Microb Cell Fact; 2016 Jun; 15(1):112. PubMed ID: 27329289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An improved differential evolution algorithm for enhancing biochemical pathways simulation and production.
    Chong CK; Mohamad MS; Deris S; Shamsir MS; Abdullah A
    Int J Data Min Bioinform; 2014; 10(4):424-39. PubMed ID: 25946887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis-Menten and approximate kinetic equations.
    Costa RS; Machado D; Rocha I; Ferreira EC
    Biosystems; 2010 May; 100(2):150-7. PubMed ID: 20226228
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactivity of nitric oxide with the [4Fe-4S] cluster of dihydroxyacid dehydratase from Escherichia coli.
    Duan X; Yang J; Ren B; Tan G; Ding H
    Biochem J; 2009 Feb; 417(3):783-9. PubMed ID: 18945212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model-driven identification of dosing regimens that maximize the antimicrobial activity of nitric oxide.
    Robinson JL; Miller RV; Brynildsen MP
    Metab Eng Commun; 2014 Dec; 1():12-18. PubMed ID: 34150500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous reaction silencing in metabolic optimization.
    Nishikawa T; Gulbahce N; Motter AE
    PLoS Comput Biol; 2008 Dec; 4(12):e1000236. PubMed ID: 19057639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of nitric oxide (NO) redox reactions contribution to nitrous oxide (N2 O) formation during nitrification using a multispecies metabolic network model.
    Perez-Garcia O; Chandran K; Villas-Boas SG; Singhal N
    Biotechnol Bioeng; 2016 May; 113(5):1124-36. PubMed ID: 26551878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current state and challenges for dynamic metabolic modeling.
    Vasilakou E; Machado D; Theorell A; Rocha I; Nöh K; Oldiges M; Wahl SA
    Curr Opin Microbiol; 2016 Oct; 33():97-104. PubMed ID: 27472025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study of nitric oxide dynamics in a growing biofilm using a density dependent reaction-diffusion model.
    Ghasemi M; Jenkins B; Doxey AC; Sivaloganathan S
    J Theor Biol; 2020 Jan; 485():110053. PubMed ID: 31628906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters.
    Adadi R; Volkmer B; Milo R; Heinemann M; Shlomi T
    PLoS Comput Biol; 2012; 8(7):e1002575. PubMed ID: 22792053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic modelling of central carbon metabolism in Escherichia coli.
    Peskov K; Mogilevskaya E; Demin O
    FEBS J; 2012 Sep; 279(18):3374-85. PubMed ID: 22823407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of qualitative models of genetic regulatory networks by model checking: analysis of the nutritional stress response in Escherichia coli.
    Batt G; Ropers D; de Jong H; Geiselmann J; Mateescu R; Page M; Schneider D
    Bioinformatics; 2005 Jun; 21 Suppl 1():i19-28. PubMed ID: 15961457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.