These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 23658533)

  • 1. Distinct translational control in CD4+ T cell subsets.
    Bjur E; Larsson O; Yurchenko E; Zheng L; Gandin V; Topisirovic I; Li S; Wagner CR; Sonenberg N; Piccirillo CA
    PLoS Genet; 2013 May; 9(5):e1003494. PubMed ID: 23658533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forced overexpression of either of the two common human Foxp3 isoforms can induce regulatory T cells from CD4(+)CD25(-) cells.
    Aarts-Riemens T; Emmelot ME; Verdonck LF; Mutis T
    Eur J Immunol; 2008 May; 38(5):1381-90. PubMed ID: 18412171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenetic mechanisms of regulation of Foxp3 expression.
    Lal G; Bromberg JS
    Blood; 2009 Oct; 114(18):3727-35. PubMed ID: 19641188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TGF-beta1 modulates Foxp3 expression and regulatory activity in distinct CD4+ T cell subsets.
    Pyzik M; Piccirillo CA
    J Leukoc Biol; 2007 Aug; 82(2):335-46. PubMed ID: 17475784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct regulatory roles of transforming growth factor-beta and interleukin-4 in the development and maintenance of natural and induced CD4+ CD25+ Foxp3+ regulatory T cells.
    Prochazkova J; Fric J; Pokorna K; Neuwirth A; Krulova M; Zajicova A; Holan V
    Immunology; 2009 Sep; 128(1 Suppl):e670-8. PubMed ID: 19740328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TCR repertoire and Foxp3 expression define functionally distinct subsets of CD4+ regulatory T cells.
    Kuczma M; Pawlikowska I; Kopij M; Podolsky R; Rempala GA; Kraj P
    J Immunol; 2009 Sep; 183(5):3118-29. PubMed ID: 19648277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of HIF1α on Foxp3 expression in CD4+ CD25- T lymphocytes.
    Wu J; Cui H; Zhu Z; Wang L; Li H; Wang D
    Microbiol Immunol; 2014 Jul; 58(7):409-15. PubMed ID: 24931519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Foxp3-deficient regulatory T cells do not revert into conventional effector CD4+ T cells but constitute a unique cell subset.
    Kuczma M; Podolsky R; Garge N; Daniely D; Pacholczyk R; Ignatowicz L; Kraj P
    J Immunol; 2009 Sep; 183(6):3731-41. PubMed ID: 19710455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between regulatory T cells subsets and lipid profile in dyslipidemic patients: a longitudinal study during atorvastatin treatment.
    Guasti L; Maresca AM; Schembri L; Rasini E; Dentali F; Squizzato A; Klersy C; Robustelli Test L; Mongiardi C; Campiotti L; Ageno W; Grandi AM; Cosentino M; Marino F
    BMC Cardiovasc Disord; 2016 Jan; 16():26. PubMed ID: 26822994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The regulation of immune tolerance by FOXP3.
    Lu L; Barbi J; Pan F
    Nat Rev Immunol; 2017 Nov; 17(11):703-717. PubMed ID: 28757603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduced frequency and functional defects of CD4
    Luo L; Zeng X; Huang Z; Luo S; Qin L; Li S
    Reprod Biol Endocrinol; 2020 Jun; 18(1):62. PubMed ID: 32522204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanisms of regulatory T cell development.
    Chatila T
    J Clin Immunol; 2008 Nov; 28(6):625-30. PubMed ID: 18763025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-small-cell lung cancer-induced immunosuppression by increased human regulatory T cells via Foxp3 promoter demethylation.
    Ke X; Zhang S; Xu J; Liu G; Zhang L; Xie E; Gao L; Li D; Sun R; Wang F; Pan S
    Cancer Immunol Immunother; 2016 May; 65(5):587-99. PubMed ID: 27000869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rare development of Foxp3+ thymocytes in the CD4+CD8+ subset.
    Lee HM; Hsieh CS
    J Immunol; 2009 Aug; 183(4):2261-6. PubMed ID: 19620303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CD30 discriminates heat shock protein 60-induced FOXP3+ CD4+ T cells with a regulatory phenotype.
    de Kleer I; Vercoulen Y; Klein M; Meerding J; Albani S; van der Zee R; Sawitzki B; Hamann A; Kuis W; Prakken B
    J Immunol; 2010 Aug; 185(4):2071-9. PubMed ID: 20631311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The calcineurin inhibitor tacrolimus allows the induction of functional CD4CD25 regulatory T cells by rabbit anti-thymocyte globulins.
    Sewgobind VD; van der Laan LJ; Kho MM; Kraaijeveld R; Korevaar SS; Mol W; Weimar W; Baan CC
    Clin Exp Immunol; 2010 Aug; 161(2):364-77. PubMed ID: 20528886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. T-cell proliferation and forkhead box P3 expression in human T cells are dependent on T-cell density: physics of a confined space?
    Bernardo D; Al-Hassi HO; Mann ER; Tee CT; Murugananthan AU; Peake ST; Hart AL; Knight SC
    Hum Immunol; 2012 Mar; 73(3):223-31. PubMed ID: 22248741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptional and translational control of Foxp3
    Piccirillo CA
    Curr Opin Immunol; 2020 Dec; 67():27-35. PubMed ID: 32818885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CD4
    Peixoto TV; Carrasco S; Botte DAC; Catanozi S; Parra ER; Lima TM; Ugriumov N; Soriano FG; de Mello SBV; Rodrigues CM; Goldenstein-Schainberg C
    Adv Rheumatol; 2019 Jul; 59(1):30. PubMed ID: 31340848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of Foxp3(+) gammadelta T cells in mouse and human.
    Kang N; Tang L; Li X; Wu D; Li W; Chen X; Cui L; Ba D; He W
    Immunol Lett; 2009 Aug; 125(2):105-13. PubMed ID: 19539651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.