BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 23658764)

  • 1. Tibet as a potential domestication center of cultivated barley of China.
    Ren X; Nevo E; Sun D; Sun G
    PLoS One; 2013; 8(5):e62700. PubMed ID: 23658764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tibet is one of the centers of domestication of cultivated barley.
    Dai F; Nevo E; Wu D; Comadran J; Zhou M; Qiu L; Chen Z; Beiles A; Chen G; Zhang G
    Proc Natl Acad Sci U S A; 2012 Oct; 109(42):16969-73. PubMed ID: 23033493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin and evolution of qingke barley in Tibet.
    Zeng X; Guo Y; Xu Q; Mascher M; Guo G; Li S; Mao L; Liu Q; Xia Z; Zhou J; Yuan H; Tai S; Wang Y; Wei Z; Song L; Zha S; Li S; Tang Y; Bai L; Zhuang Z; He W; Zhao S; Fang X; Gao Q; Yin Y; Wang J; Yang H; Zhang J; Henry RJ; Stein N; Tashi N
    Nat Commun; 2018 Dec; 9(1):5433. PubMed ID: 30575759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic diversity analysis of Tibetan wild barley using SSR markers.
    Feng ZY; Liu XJ; Zhang YZ; Ling HQ
    Yi Chuan Xue Bao; 2006 Oct; 33(10):917-28. PubMed ID: 17046592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Most Tibetan weedy barleys originated via recombination between Btr1 and Btr2 in domesticated barley.
    Gao G; Yan L; Cai Y; Guo Y; Jiang C; He Q; Tasnim S; Feng Z; Liu J; Zhang J; Komatsuda T; Mascher M; Yang P
    Plant Commun; 2024 May; 5(5):100828. PubMed ID: 38297838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular phylogeography of domesticated barley traces expansion of agriculture in the Old World.
    Saisho D; Purugganan MD
    Genetics; 2007 Nov; 177(3):1765-76. PubMed ID: 17947416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Population genetics and phylogenetic analysis of the vrs1 nucleotide sequence in wild and cultivated barley.
    Ren X; Wang Y; Yan S; Sun D; Sun G
    Genome; 2014 Apr; 57(4):239-44. PubMed ID: 25033083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origin of worldwide cultivated barley revealed by NAM-1 gene and grain protein content.
    Wang Y; Ren X; Sun D; Sun G
    Front Plant Sci; 2015; 6():803. PubMed ID: 26483818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidation of the origin of 'agriocrithon' based on domestication genes questions the hypothesis that Tibet is one of the centers of barley domestication.
    Pourkheirandish M; Kanamori H; Wu J; Sakuma S; Blattner FR; Komatsuda T
    Plant J; 2018 May; 94(3):525-534. PubMed ID: 29469199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Haplotype structure at seven barley genes: relevance to gene pool bottlenecks, phylogeny of ear type and site of barley domestication.
    Kilian B; Ozkan H; Kohl J; von Haeseler A; Barale F; Deusch O; Brandolini A; Yucel C; Martin W; Salamini F
    Mol Genet Genomics; 2006 Sep; 276(3):230-41. PubMed ID: 16758198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resequencing data indicate a modest effect of domestication on diversity in barley: a cultigen with multiple origins.
    Morrell PL; Gonzales AM; Meyer KK; Clegg MT
    J Hered; 2014; 105(2):253-64. PubMed ID: 24336926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide association analysis of aluminum tolerance in cultivated and Tibetan wild barley.
    Cai S; Wu D; Jabeen Z; Huang Y; Huang Y; Zhang G
    PLoS One; 2013; 8(7):e69776. PubMed ID: 23922796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence diversification in recessive alleles of two host factor genes suggests adaptive selection for bymovirus resistance in cultivated barley from East Asia.
    Yang P; Habekuß A; Hofinger BJ; Kanyuka K; Kilian B; Graner A; Ordon F; Stein N
    Theor Appl Genet; 2017 Feb; 130(2):331-344. PubMed ID: 27830284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the origin and domestication history of Barley (Hordeum vulgare).
    Badr A; Müller K; Schäfer-Pregl R; El Rabey H; Effgen S; Ibrahim HH; Pozzi C; Rohde W; Salamini F
    Mol Biol Evol; 2000 Apr; 17(4):499-510. PubMed ID: 10742042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Horn of Africa as a centre of barley diversification and a potential domestication site.
    Orabi J; Backes G; Wolday A; Yahyaoui A; Jahoor A
    Theor Appl Genet; 2007 Apr; 114(6):1117-27. PubMed ID: 17279366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Genetic diversity of wild close relatives of barley in Tibet of China revealed by AFLP].
    Zhang D; Ding Y
    Yi Chuan; 2007 Jun; 29(6):725-30. PubMed ID: 17650490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome profiling reveals mosaic genomic origins of modern cultivated barley.
    Dai F; Chen ZH; Wang X; Li Z; Jin G; Wu D; Cai S; Wang N; Wu F; Nevo E; Zhang G
    Proc Natl Acad Sci U S A; 2014 Sep; 111(37):13403-8. PubMed ID: 25197090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular evidence of RNA polymerase II gene reveals the origin of worldwide cultivated barley.
    Wang Y; Ren X; Sun D; Sun G
    Sci Rep; 2016 Oct; 6():36122. PubMed ID: 27786300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic diversity analysis of wild close relatives of barley from Tibet and the Middle East by ISSR and SSR markers.
    Wang A; Yu Z; Ding Y
    C R Biol; 2009 Apr; 332(4):393-403. PubMed ID: 19304270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Barley heads east: Genetic analyses reveal routes of spread through diverse Eurasian landscapes.
    Lister DL; Jones H; Oliveira HR; Petrie CA; Liu X; Cockram J; Kneale CJ; Kovaleva O; Jones MK
    PLoS One; 2018; 13(7):e0196652. PubMed ID: 30020920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.