These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 23658781)

  • 1. Construction of a stable replicating shuttle vector for Caldicellulosiruptor species: use for extending genetic methodologies to other members of this genus.
    Chung D; Cha M; Farkas J; Westpheling J
    PLoS One; 2013; 8(5):e62881. PubMed ID: 23658781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterologous complementation of a pyrF deletion in Caldicellulosiruptor hydrothermalis generates a new host for the analysis of biomass deconstruction.
    Groom J; Chung D; Young J; Westpheling J
    Biotechnol Biofuels; 2014; 7(1):132. PubMed ID: 25254074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Highly Thermostable Kanamycin Resistance Marker Expands the Tool Kit for Genetic Manipulation of Caldicellulosiruptor bescii.
    Lipscomb GL; Conway JM; Blumer-Schuette SE; Kelly RM; Adams MWW
    Appl Environ Microbiol; 2016 Jul; 82(14):4421-4428. PubMed ID: 27208106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overcoming restriction as a barrier to DNA transformation in Caldicellulosiruptor species results in efficient marker replacement.
    Chung D; Farkas J; Westpheling J
    Biotechnol Biofuels; 2013 May; 6(1):82. PubMed ID: 23714229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome Stability in Engineered Strains of the Extremely Thermophilic Lignocellulose-Degrading Bacterium Caldicellulosiruptor bescii.
    Williams-Rhaesa AM; Poole FL; Dinsmore JT; Lipscomb GL; Rubinstein GM; Scott IM; Conway JM; Lee LL; Khatibi PA; Kelly RM; Adams MWW
    Appl Environ Microbiol; 2017 Jul; 83(14):. PubMed ID: 28476773
    [No Abstract]   [Full Text] [Related]  

  • 6. Phylogenetic, microbiological, and glycoside hydrolase diversities within the extremely thermophilic, plant biomass-degrading genus Caldicellulosiruptor.
    Blumer-Schuette SE; Lewis DL; Kelly RM
    Appl Environ Microbiol; 2010 Dec; 76(24):8084-92. PubMed ID: 20971878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioavailability of Carbohydrate Content in Natural and Transgenic Switchgrasses for the Extreme Thermophile Caldicellulosiruptor bescii.
    Zurawski JV; Khatibi PA; Akinosho HO; Straub CT; Compton SH; Conway JM; Lee LL; Ragauskas AJ; Davison BH; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28625990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methylation by a unique α-class N4-cytosine methyltransferase is required for DNA transformation of Caldicellulosiruptor bescii DSM6725.
    Chung D; Farkas J; Huddleston JR; Olivar E; Westpheling J
    PLoS One; 2012; 7(8):e43844. PubMed ID: 22928042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deletion of the Clostridium thermocellum recA gene reveals that it is required for thermophilic plasmid replication but not plasmid integration at homologous DNA sequences.
    Groom J; Chung D; Kim SK; Guss A; Westpheling J
    J Ind Microbiol Biotechnol; 2018 Aug; 45(8):753-763. PubMed ID: 29808293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and characterization of CbeI, a novel thermostable restriction enzyme from Caldicellulosiruptor bescii DSM 6725 and a member of a new subfamily of HaeIII-like enzymes.
    Chung DH; Huddleston JR; Farkas J; Westpheling J
    J Ind Microbiol Biotechnol; 2011 Nov; 38(11):1867-77. PubMed ID: 21604181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of an Escherichia coli-Rhodococcus shuttle vector and plasmid transformation in Rhodococcus spp.
    Singer ME; Finnerty WR
    J Bacteriol; 1988 Feb; 170(2):638-45. PubMed ID: 2828318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deletion of Caldicellulosiruptor bescii CelA reveals its crucial role in the deconstruction of lignocellulosic biomass.
    Young J; Chung D; Bomble YJ; Himmel ME; Westpheling J
    Biotechnol Biofuels; 2014; 7(1):142. PubMed ID: 25317205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complete genome sequences for the anaerobic, extremely thermophilic plant biomass-degrading bacteria Caldicellulosiruptor hydrothermalis, Caldicellulosiruptor kristjanssonii, Caldicellulosiruptor kronotskyensis, Caldicellulosiruptor owensensis, and Caldicellulosiruptor lactoaceticus.
    Blumer-Schuette SE; Ozdemir I; Mistry D; Lucas S; Lapidus A; Cheng JF; Goodwin LA; Pitluck S; Land ML; Hauser LJ; Woyke T; Mikhailova N; Pati A; Kyrpides NC; Ivanova N; Detter JC; Walston-Davenport K; Han S; Adams MW; Kelly RM
    J Bacteriol; 2011 Mar; 193(6):1483-4. PubMed ID: 21216991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homologous expression of the Caldicellulosiruptor bescii CelA reveals that the extracellular protein is glycosylated.
    Chung D; Young J; Bomble YJ; Vander Wall TA; Groom J; Himmel ME; Westpheling J
    PLoS One; 2015; 10(3):e0119508. PubMed ID: 25799047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering Caldicellulosiruptor bescii with Surface Layer Homology Domain-Linked Glycoside Hydrolases Improves Plant Biomass Solubilization.
    Laemthong T; Bing RG; Crosby JR; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2022 Oct; 88(20):e0127422. PubMed ID: 36169328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a cryptic plasmid from a Greenland ice core Arthrobacter isolate and construction of a shuttle vector that replicates in psychrophilic high G+C Gram-positive recipients.
    Miteva V; Lantz S; Brenchley J
    Extremophiles; 2008 May; 12(3):441-9. PubMed ID: 18335166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional Analysis of the Glucan Degradation Locus in Caldicellulosiruptor bescii Reveals Essential Roles of Component Glycoside Hydrolases in Plant Biomass Deconstruction.
    Conway JM; McKinley BS; Seals NL; Hernandez D; Khatibi PA; Poudel S; Giannone RJ; Hettich RL; Williams-Rhaesa AM; Lipscomb GL; Adams MWW; Kelly RM
    Appl Environ Microbiol; 2017 Dec; 83(24):. PubMed ID: 28986379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction and characterization of a Mycobacterium-Escherichia coli shuttle vector.
    Radford AJ; Hodgson AL
    Plasmid; 1991 Mar; 25(2):149-53. PubMed ID: 1857754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Promiscuous plasmid replication in thermophiles: Use of a novel hyperthermophilic replicon for genetic manipulation of
    Groom J; Chung D; Olson DG; Lynd LR; Guss AM; Westpheling J
    Metab Eng Commun; 2016 Dec; 3():30-38. PubMed ID: 29468112
    [No Abstract]   [Full Text] [Related]  

  • 20. Advances in development of a genetic system for Thermoanaerobacterium spp.: expression of genes encoding hydrolytic enzymes, development of a second shuttle vector, and integration of genes into the chromosome.
    Mai V; Wiegel J
    Appl Environ Microbiol; 2000 Nov; 66(11):4817-21. PubMed ID: 11055929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.