These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 23658814)

  • 1. Effects of the chromatic defocus caused by interchange of two monochromatic lights on refraction and ocular dimension in guinea pigs.
    Qian YF; Dai JH; Liu R; Chen MJ; Zhou XT; Chu RY
    PLoS One; 2013; 8(5):e63229. PubMed ID: 23658814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of different monochromatic lights on refractive development and eye growth in guinea pigs.
    Liu R; Qian YF; He JC; Hu M; Zhou XT; Dai JH; Qu XM; Chu RY
    Exp Eye Res; 2011 Jun; 92(6):447-53. PubMed ID: 21396363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transfer from blue light or green light to white light partially reverses changes in ocular refraction and anatomy of developing guinea pigs.
    Qian YF; Liu R; Dai JH; Chen MJ; Zhou XT; Chu RY
    J Vis; 2013 Sep; 13(11):. PubMed ID: 24071588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The wavelength composition and temporal modulation of ambient lighting strongly affect refractive development in young tree shrews.
    Gawne TJ; Siegwart JT; Ward AH; Norton TT
    Exp Eye Res; 2017 Feb; 155():75-84. PubMed ID: 27979713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Illumination with monochromatic long-wavelength light promotes myopic shift and ocular elongation in newborn pigmented guinea pigs.
    Long Q; Chen D; Chu R
    Cutan Ocul Toxicol; 2009; 28(4):176-80. PubMed ID: 19888887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cone signals for spectacle-lens compensation: differential responses to short and long wavelengths.
    Rucker FJ; Wallman J
    Vision Res; 2008 Sep; 48(19):1980-91. PubMed ID: 18585403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wavelength Defocus and Temporal Sensitivity Affect Refractive Development in Guinea Pigs.
    Tian T; Zou L; Wu S; Liu H; Liu R
    Invest Ophthalmol Vis Sci; 2019 May; 60(6):2173-2180. PubMed ID: 31108548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of chromatic and lens-induced defocus during visual control of eye growth in guinea pigs (Cavia porcellus).
    Jiang L; Zhang S; Schaeffel F; Xiong S; Zheng Y; Zhou X; Lu F; Qu J
    Vision Res; 2014 Jan; 94():24-32. PubMed ID: 24216006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Altered Retinal Cones/Opsins on Refractive Development under Monochromatic Lights in Guinea Pigs.
    Zou L; Zhu X; Liu R; Ma F; Yu M; Liu H; Dai J
    J Ophthalmol; 2018; 2018():9197631. PubMed ID: 29675275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short Wavelength (Blue) Light Is Protective for Lens-Induced Myopia in Guinea Pigs Potentially Through a Retinoic Acid-Related Mechanism.
    Yu M; Liu W; Wang B; Dai J
    Invest Ophthalmol Vis Sci; 2021 Jan; 62(1):21. PubMed ID: 33475690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of spectral property and intensity of light on natural refractive development and compensation to negative lenses in guinea pigs.
    Li W; Lan W; Yang S; Liao Y; Xu Q; Lin L; Yang Z
    Invest Ophthalmol Vis Sci; 2014 Oct; 55(10):6324-32. PubMed ID: 25277235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectacle lens compensation in the pigmented guinea pig.
    Howlett MH; McFadden SA
    Vision Res; 2009 Jan; 49(2):219-27. PubMed ID: 18992765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monochromatic and white light and the regulation of eye growth.
    Rucker F
    Exp Eye Res; 2019 Jul; 184():172-182. PubMed ID: 31018118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal color contrast guides emmetropization in chick.
    Watts NS; Taylor C; Rucker FJ
    Exp Eye Res; 2021 Jan; 202():108331. PubMed ID: 33152390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imposed retinal image size changes--do they provide a cue to the sign of lens-induced defocus in chick?
    Schmid KL; Strang NC; Wildsoet CF
    Optom Vis Sci; 1999 May; 76(5):320-5. PubMed ID: 10375249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Normal development of refractive state and ocular dimensions in guinea pigs.
    Zhou X; Qu J; Xie R; Wang R; Jiang L; Zhao H; Wen J; Lu F
    Vision Res; 2006 Sep; 46(18):2815-23. PubMed ID: 16723148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Refractive and biometric changes in adolescent guinea pig eyes in development and recover stages of form-deprivation myopia].
    Long KL; Jiang LQ; Li Y; Lü F; Qu J; Zhou XT
    Zhonghua Yan Ke Za Zhi; 2010 Jun; 46(6):550-5. PubMed ID: 21055202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signals for defocus arise from longitudinal chromatic aberration in chick.
    Rucker FJ; Eskew RT; Taylor C
    Exp Eye Res; 2020 Sep; 198():108126. PubMed ID: 32717338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of artificial light with different spectral compositions on refractive development and matrix metalloproteinase 2 and tissue inhibitor of metalloproteinases 2 expression in the sclerae of juvenile guinea pigs.
    Yuan J; Li L; Fan Y; Xu X; Huang X; Shi J; Zhang C; Shi L; Wang Y
    Eur J Histochem; 2024 Jun; 68(3):. PubMed ID: 38934084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal properties of the myopic response to defocus in the guinea pig.
    Leotta AJ; Bowrey HE; Zeng G; McFadden SA
    Ophthalmic Physiol Opt; 2013 May; 33(3):227-44. PubMed ID: 23662957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.