These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 23659759)
21. Performance evaluation and bacterial characterization of membrane bioreactors. Khan SJ; Parveen F; Ahmad A; Hashmi I; Hankins N Bioresour Technol; 2013 Aug; 141():2-7. PubMed ID: 23453983 [TBL] [Abstract][Full Text] [Related]
22. Nutrient removal in an electrically enhanced membrane bioreactor. Wei V; Oleszkiewicz JA; Elektorowicz M Water Sci Technol; 2009; 60(12):3159-63. PubMed ID: 19955639 [TBL] [Abstract][Full Text] [Related]
23. Comparative study of polyvinylidene fluoride and PES flat membranes in submerged MBRs to treat domestic wastewater. Zhu T; Xie YH; Jiang J; Wang YT; Zhang HJ; Nozaki T Water Sci Technol; 2009; 59(3):399-405. PubMed ID: 19213993 [TBL] [Abstract][Full Text] [Related]
24. Modelling of long-term simultaneous nitrification and denitrification (SNDN) performance of a pilot scale membrane bioreactor. Sarioglu M; Insel G; Artan N; Orhon D Water Sci Technol; 2008; 57(11):1825-33. PubMed ID: 18547937 [TBL] [Abstract][Full Text] [Related]
25. Comparison of polyhydroxyalkanoates production by activated sludges from anaerobic and oxic zones of an enhanced biological phosphorus removal system: effect of sludge retention time. Chang HF; Chang WC; Chuang SH; Fang YL Bioresour Technol; 2011 May; 102(9):5473-8. PubMed ID: 21093256 [TBL] [Abstract][Full Text] [Related]
26. Enhanced biological phosphorus removal process implemented in membrane bioreactors to improve phosphorous recovery and recycling. Lesjean B; Gnirss R; Adam C; Kraume M; Luck F Water Sci Technol; 2003; 48(1):87-94. PubMed ID: 12926624 [TBL] [Abstract][Full Text] [Related]
27. Biological nitrogen and phosphorus removal in UCT-type MBR process. Lee H; Han J; Yun Z Water Sci Technol; 2009; 59(11):2093-9. PubMed ID: 19494447 [TBL] [Abstract][Full Text] [Related]
28. Long-term study on the impact of temperature on enhanced biological phosphorus and nitrogen removal in membrane bioreactor. Sayi-Ucar N; Sarioglu M; Insel G; Cokgor EU; Orhon D; van Loosdrecht MC Water Res; 2015 Nov; 84():8-17. PubMed ID: 26204227 [TBL] [Abstract][Full Text] [Related]
29. Design of nutrient removal activated sludge systems. Manga J; Ferrer J; Seco A; Garcia-Usach F Water Sci Technol; 2003; 47(11):115-22. PubMed ID: 12906279 [TBL] [Abstract][Full Text] [Related]
30. Indigenous somatic coliphage removal from a real municipal wastewater by a submerged membrane bioreactor. Wu J; Li H; Huang X Water Res; 2010 Mar; 44(6):1853-62. PubMed ID: 20045169 [TBL] [Abstract][Full Text] [Related]
31. Process hydraulics, distributed bacterial states, and biological phosphorus removal from wastewater. Schuler AJ Biotechnol Bioeng; 2006 Aug; 94(5):909-20. PubMed ID: 16548000 [TBL] [Abstract][Full Text] [Related]
32. Pilot scale study on a new membrane bioreactor hybrid system in municipal wastewater treatment. Nguyen TT; Ngo HH; Guo W Bioresour Technol; 2013 Aug; 141():8-12. PubMed ID: 23566462 [TBL] [Abstract][Full Text] [Related]
33. Comparison between a fixed bed hybrid membrane bioreactor and a conventional membrane bioreactor for municipal wastewater treatment: a pilot-scale study. Rodríguez-Hernández L; Esteban-García AL; Tejero I Bioresour Technol; 2014; 152():212-9. PubMed ID: 24291797 [TBL] [Abstract][Full Text] [Related]
34. Bacterial phosphate metabolism and its application to phosphorus recovery and industrial bioprocesses. Hirota R; Kuroda A; Kato J; Ohtake H J Biosci Bioeng; 2010 May; 109(5):423-32. PubMed ID: 20347763 [TBL] [Abstract][Full Text] [Related]
35. Advances in distributed parameter approach to the dynamics and control of activated sludge processes for wastewater treatment. Lee TT; Wang FY; Newell RB Water Res; 2006 Mar; 40(5):853-69. PubMed ID: 16458947 [TBL] [Abstract][Full Text] [Related]
36. Optimum operation conditions of nitrogen and phosphorus removal by a biofilm-activated-sludge system. Liu JX; van Groenestijn JW J Environ Sci (China); 2003 Jan; 15(1):25-30. PubMed ID: 12602598 [TBL] [Abstract][Full Text] [Related]
37. Understanding the granulation process of activated sludge in a biological phosphorus removal sequencing batch reactor. Wu CY; Peng YZ; Wang RD; Zhou YX Chemosphere; 2012 Feb; 86(8):767-73. PubMed ID: 22130123 [TBL] [Abstract][Full Text] [Related]
38. Long-term performance evaluation of EBPR process in tropical climate: start-up, process stability, and the effect of operational pH and influent C:P ratio. Ong YH; Chua AS; Lee BP; Ngoh GC Water Sci Technol; 2013; 67(2):340-6. PubMed ID: 23168633 [TBL] [Abstract][Full Text] [Related]
39. Biological nitrogen and phosphorus removal in membrane bioreactors: model development and parameter estimation. Cosenza A; Mannina G; Neumann MB; Viviani G; Vanrolleghem PA Bioprocess Biosyst Eng; 2013 Apr; 36(4):499-514. PubMed ID: 23010720 [TBL] [Abstract][Full Text] [Related]
40. Contribution of microfiltration on phosphorus removal in the sequencing anoxic/anaerobic membrane bioreactor. Cho J; Song KG; Ahn KH Bioprocess Biosyst Eng; 2009 Aug; 32(5):593-602. PubMed ID: 19048295 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]