BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 23659800)

  • 1. Cross-linked enzyme aggregates of Mung bean epoxide hydrolases: a highly active, stable and recyclable biocatalyst for asymmetric hydrolysis of epoxides.
    Yu CY; Li XF; Lou WY; Zong MH
    J Biotechnol; 2013 Jun; 166(1-2):12-9. PubMed ID: 23659800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient asymmetric hydrolysis of styrene oxide catalyzed by Mung bean epoxide hydrolases in ionic liquid-based biphasic systems.
    Chen WJ; Lou WY; Zong MH
    Bioresour Technol; 2012 Jul; 115():58-62. PubMed ID: 22100235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of hydrophilic ionic liquids in a two-phase system to improve Mung bean epoxide hydrolases-mediated asymmetric hydrolysis of styrene oxide.
    Chen WJ; Lou WY; Yu CY; Wu H; Zong MH; Smith TJ
    J Biotechnol; 2012 Dec; 162(2-3):183-90. PubMed ID: 22995740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enantioconvergent hydrolysis of styrene epoxides by newly discovered epoxide hydrolases in mung bean.
    Xu W; Xu JH; Pan J; Gu Q; Wu XY
    Org Lett; 2006 Apr; 8(8):1737-40. PubMed ID: 16597154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterologous overexpression of Vigna radiata epoxide hydrolase in Escherichia coli and its catalytic performance in enantioconvergent hydrolysis of p-nitrostyrene oxide into (R)-p-nitrophenyl glycol.
    Zhu QQ; He WH; Kong XD; Fan LQ; Zhao J; Li SX; Xu JH
    Appl Microbiol Biotechnol; 2014 Jan; 98(1):207-18. PubMed ID: 23615737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enantioconvergent hydrolysis of m-nitrostyrene oxide at an elevated concentration by Phaseolus vulgaris epoxide hydrolase in the organic/aqueous two-phase system.
    Wen Z; Zhao J; Liu YY; Zhou JJ; Liu C; Li C; Wu MC
    Lett Appl Microbiol; 2020 Mar; 70(3):181-188. PubMed ID: 31784998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular engineering of epoxide hydrolase and its application to asymmetric and enantioconvergent hydrolysis.
    Lee EY; Shuler ML
    Biotechnol Bioeng; 2007 Oct; 98(2):318-27. PubMed ID: 17405175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Overview on the Enhancement of Enantioselectivity and Stability of Microbial Epoxide Hydrolases.
    Saini P; Sareen D
    Mol Biotechnol; 2017 Mar; 59(2-3):98-116. PubMed ID: 28271340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and characterization of cross-linked enzyme aggregates (CLEAs) of recombinant poly-3-hydroxybutyrate depolymerase from Streptomyces exfoliatus.
    Hormigo D; García-Hidalgo J; Acebal C; de la Mata I; Arroyo M
    Bioresour Technol; 2012 Jul; 115():177-82. PubMed ID: 21974880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laboratory evolution of an epoxide hydrolase - towards an enantioconvergent biocatalyst.
    Kotik M; Archelas A; Faměrová V; Oubrechtová P; Křen V
    J Biotechnol; 2011 Oct; 156(1):1-10. PubMed ID: 21854816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic resolution of racemic styrene oxide at a high concentration by recombinant Aspergillus usamii epoxide hydrolase in an n-hexanol/buffer biphasic system.
    Hu D; Wang R; Shi XL; Ye HH; Wu Q; Wu MC; Chu JJ
    J Biotechnol; 2016 Oct; 236():152-8. PubMed ID: 27546798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crosslinked aggregates of Rhizopus oryzae lipase as industrial biocatalysts: preparation, optimization, characterization, and application for enantioselective resolution reactions.
    Kartal F; Kilinc A
    Biotechnol Prog; 2012 Jul; 28(4):937-45. PubMed ID: 22685034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-linked enzyme aggregates (CLEAs): stable and recyclable biocatalysts.
    Sheldon RA
    Biochem Soc Trans; 2007 Dec; 35(Pt 6):1583-7. PubMed ID: 18031271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparative-scale kinetic resolution of racemic styrene oxide by immobilized epoxide hydrolase.
    Yildirim D; Tükel SS; Alagöz D; Alptekin O
    Enzyme Microb Technol; 2011 Dec; 49(6-7):555-9. PubMed ID: 22142731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving stability and activity of cross-linked enzyme aggregates based on polyethylenimine in hydrolysis of fish oil for enrichment of polyunsaturated fatty acids.
    Yan J; Gui X; Wang G; Yan Y
    Appl Biochem Biotechnol; 2012 Feb; 166(4):925-32. PubMed ID: 22167690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotechnological production of enantiopure epoxides by enzymatic kinetic resolution.
    Choi WJ
    Appl Microbiol Biotechnol; 2009 Aug; 84(2):239-47. PubMed ID: 19590868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and catalytic properties of new epoxide hydrolases from the genomic data of soil bacteria.
    Stojanovski G; Dobrijevic D; Hailes HC; Ward JM
    Enzyme Microb Technol; 2020 Sep; 139():109592. PubMed ID: 32732040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the production, activity, and stability of CLEAs with diepoxides.
    Hernández-García S; García-García MI; García-Carmona F
    Biotechnol Prog; 2017 Sep; 33(5):1425-1429. PubMed ID: 28556517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel cross-linked enzyme aggregates (CLEAs) of papain and neutrase-production, partial characterization and application.
    Chen Z; Wang Y; Liu W; Wang J; Chen H
    Int J Biol Macromol; 2017 Feb; 95():650-657. PubMed ID: 27913224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-function relationships of epoxide hydrolases and their potential use in biocatalysis.
    Widersten M; Gurell A; Lindberg D
    Biochim Biophys Acta; 2010 Mar; 1800(3):316-26. PubMed ID: 19948209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.