BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 23659802)

  • 1. Labeling lysine acetyltransferase substrates with engineered enzymes and functionalized cofactor surrogates.
    Yang C; Mi J; Feng Y; Ngo L; Gao T; Yan L; Zheng YG
    J Am Chem Soc; 2013 May; 135(21):7791-4. PubMed ID: 23659802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and Profiling of Histone Acetyltransferase Substrates by Bioorthogonal Labeling.
    Song J; Han Z; Zheng YG
    Curr Protoc; 2022 Jul; 2(7):e497. PubMed ID: 35849593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemoproteomic Profiling of Protein Substrates of a Major Lysine Acetyltransferase in the Native Cellular Context.
    Song J; Ngo L; Bell K; Zheng YG
    ACS Chem Biol; 2022 May; 17(5):1092-1102. PubMed ID: 35417122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioorthogonal Reporters for Detecting and Profiling Protein Acetylation and Acylation.
    Song J; Zheng YG
    SLAS Discov; 2020 Feb; 25(2):148-162. PubMed ID: 31711353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemoproteomic profiling of lysine acetyltransferases highlights an expanded landscape of catalytic acetylation.
    Montgomery DC; Sorum AW; Meier JL
    J Am Chem Soc; 2014 Jun; 136(24):8669-76. PubMed ID: 24836640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating Peptide-Coenzyme A Conjugates as Chemical Probes for Proteomic Profiling of N-Terminal and Lysine Acetyltransferases.
    Sindlinger J; Schön S; Eirich J; Kirchgäßner S; Finkemeier I; Schwarzer D
    Chembiochem; 2022 Sep; 23(17):e202200255. PubMed ID: 35776679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of lysine acetyltransferase p300 substrates using 4-pentynoyl-coenzyme A and bioorthogonal proteomics.
    Yang YY; Grammel M; Hang HC
    Bioorg Med Chem Lett; 2011 Sep; 21(17):4976-9. PubMed ID: 21669532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. KAT(ching) metabolism by the tail: insight into the links between lysine acetyltransferases and metabolism.
    Albaugh BN; Arnold KM; Denu JM
    Chembiochem; 2011 Jan; 12(2):290-8. PubMed ID: 21243716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Profiling Cellular Substrates of Lysine Acetyltransferases GCN5 and p300 with Orthogonal Labeling and Click Chemistry.
    Han Z; Chou CW; Yang X; Bartlett MG; Zheng YG
    ACS Chem Biol; 2017 Jun; 12(6):1547-1555. PubMed ID: 28426192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cofactor Analogues as Active Site Probes in Lysine Acetyltransferases.
    Simon RP; Rumpf T; Linkuviene V; Matulis D; Akhtar A; Jung M
    J Med Chem; 2019 Mar; 62(5):2582-2597. PubMed ID: 30785747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fluorescence-based acetylation assay using thiol-sensitive probes.
    Gao T; Yang C; Zheng YG
    Methods Mol Biol; 2013; 981():229-38. PubMed ID: 23381866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of In Vitro Protein Lysine Acetylation by Reversed Phase HPLC.
    Njeri CW; Ononye OE; Balakrishnan L
    Methods Mol Biol; 2019; 1983():49-56. PubMed ID: 31087292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steric-Free Bioorthogonal Labeling of Acetylation Substrates Based on a Fluorine-Thiol Displacement Reaction.
    Lyu Z; Zhao Y; Buuh ZY; Gorman N; Goldman AR; Islam MS; Tang HY; Wang RE
    J Am Chem Soc; 2021 Jan; 143(3):1341-1347. PubMed ID: 33433199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A chemical method for labeling lysine methyltransferase substrates.
    Binda O; Boyce M; Rush JS; Palaniappan KK; Bertozzi CR; Gozani O
    Chembiochem; 2011 Jan; 12(2):330-4. PubMed ID: 21243721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PanM, an acetyl-coenzyme A sensor required for maturation of L-aspartate decarboxylase (PanD).
    Stuecker TN; Tucker AC; Escalante-Semerena JC
    mBio; 2012; 3(4):. PubMed ID: 22782525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical Biology Approaches for Investigating the Functions of Lysine Acetyltransferases.
    He M; Han Z; Liu L; Zheng YG
    Angew Chem Int Ed Engl; 2018 Jan; 57(5):1162-1184. PubMed ID: 28786225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. mChIP-KAT-MS, a method to map protein interactions and acetylation sites for lysine acetyltransferases.
    Mitchell L; Huard S; Cotrut M; Pourhanifeh-Lemeri R; Steunou AL; Hamza A; Lambert JP; Zhou H; Ning Z; Basu A; Côté J; Figeys DA; Baetz K
    Proc Natl Acad Sci U S A; 2013 Apr; 110(17):E1641-50. PubMed ID: 23572591
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determinants within the C-terminal domain of Streptomyces lividans acetyl-CoA synthetase that block acetylation of its active site lysine in vitro by the protein acetyltransferase (Pat) enzyme.
    Tucker AC; Escalante-Semerena JC
    PLoS One; 2014; 9(6):e99817. PubMed ID: 24918787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of lysine side chain length on histone lysine acetyltransferase catalysis.
    Proietti G; Wang Y; Rainone G; Mecinović J
    Sci Rep; 2020 Aug; 10(1):13046. PubMed ID: 32747680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site specificity analysis of Piccolo NuA4-mediated acetylation for different histone complexes.
    Kuo YM; Henry RA; Tan S; Côté J; Andrews AJ
    Biochem J; 2015 Dec; 472(2):239-48. PubMed ID: 26420880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.