These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 23659965)
21. Comparison of sludge characteristics and performance of a submerged membrane bioreactor and an activated sludge process at high solids retention time. Massé A; Spérandio M; Cabassud C Water Res; 2006 Jul; 40(12):2405-15. PubMed ID: 16759682 [TBL] [Abstract][Full Text] [Related]
22. Effect of magnetic nanoparticles on the performance of activated sludge treatment system. Ni SQ; Ni J; Yang N; Wang J Bioresour Technol; 2013 Sep; 143():555-61. PubMed ID: 23835260 [TBL] [Abstract][Full Text] [Related]
23. Removal of selected endocrine disrupters in activated sludge systems: effect of sludge retention time on their sorption and biodegradation. Stasinakis AS; Kordoutis CI; Tsiouma VC; Gatidou G; Thomaidis NS Bioresour Technol; 2010 Apr; 101(7):2090-5. PubMed ID: 19939674 [TBL] [Abstract][Full Text] [Related]
24. Effect of extracellular polymers on freeze-thaw conditioning of activated sludge. Ormeci B; Vesilind PA Water Sci Technol; 2002; 46(10):269-75. PubMed ID: 12479481 [TBL] [Abstract][Full Text] [Related]
25. [Flocculation characteristics of the return sludge in chemical-biological flocculation process]. Zhang ZB; Zhao JF; Xia SQ; Zhang XY; Yin MM; Wang XJ; Wang RC Huan Jing Ke Xue; 2009 Mar; 30(3):840-4. PubMed ID: 19432338 [TBL] [Abstract][Full Text] [Related]
26. Adsorption of phthalates by activated sludge and its biopolymers. Fang HH; Zheng H Environ Technol; 2004 Jul; 25(7):757-61. PubMed ID: 15346856 [TBL] [Abstract][Full Text] [Related]
27. Removal of silver nanoparticles in simulated wastewater treatment processes and its impact on COD and NH(4) reduction. Hou L; Li K; Ding Y; Li Y; Chen J; Wu X; Li X Chemosphere; 2012 Apr; 87(3):248-52. PubMed ID: 22245077 [TBL] [Abstract][Full Text] [Related]
28. Adsorption mechanism of ZnO and CuO nanoparticles on two typical sludge EPS: Effect of nanoparticle diameter and fractional EPS polarity on binding. Wei L; Ding J; Xue M; Qin K; Wang S; Xin M; Jiang J; Zhao Q Chemosphere; 2019 Jan; 214():210-219. PubMed ID: 30265928 [TBL] [Abstract][Full Text] [Related]
29. Fate of zinc oxide nanoparticles during anaerobic digestion of wastewater and post-treatment processing of sewage sludge. Lombi E; Donner E; Tavakkoli E; Turney TW; Naidu R; Miller BW; Scheckel KG Environ Sci Technol; 2012 Aug; 46(16):9089-96. PubMed ID: 22816872 [TBL] [Abstract][Full Text] [Related]
30. Long-term effects of cupric oxide nanoparticles (CuO NPs) on the performance, microbial community and enzymatic activity of activated sludge in a sequencing batch reactor. Wang S; Li Z; Gao M; She Z; Ma B; Guo L; Zheng D; Zhao Y; Jin C; Wang X; Gao F J Environ Manage; 2017 Feb; 187():330-339. PubMed ID: 27918973 [TBL] [Abstract][Full Text] [Related]
31. Long-term effect of metal oxide nanoparticles on activated sludge. Sundaram B; Kumar A Water Sci Technol; 2017 Jan; 75(2):462-473. PubMed ID: 28112673 [TBL] [Abstract][Full Text] [Related]
32. Potential acute effects of suspended aluminum nitride (AlN) nanoparticles on soluble microbial products (SMP) of activated sludge. Zhou L; Zhuang W; Wang X; Yu K; Yang S; Xia S J Environ Sci (China); 2017 Jul; 57():284-292. PubMed ID: 28647249 [TBL] [Abstract][Full Text] [Related]
33. Heavy metal removal from contaminated sludge for land application: a review. Babel S; del Mundo Dacera D Waste Manag; 2006; 26(9):988-1004. PubMed ID: 16298121 [TBL] [Abstract][Full Text] [Related]
34. Effect of Increased Influent COD on Relieving the Toxicity of CeO Zheng X; Zhang Y; Chen W; Wang W; Xu H; Shao X; Yang M; Xu Z; Zhu L Int J Environ Res Public Health; 2019 Sep; 16(19):. PubMed ID: 31561526 [TBL] [Abstract][Full Text] [Related]
35. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Radjenović J; Petrović M; Barceló D Water Res; 2009 Feb; 43(3):831-41. PubMed ID: 19091371 [TBL] [Abstract][Full Text] [Related]
36. Roles of extracellular polymeric substances in enhanced biological phosphorus removal process. Li WW; Zhang HL; Sheng GP; Yu HQ Water Res; 2015 Dec; 86():85-95. PubMed ID: 26143588 [TBL] [Abstract][Full Text] [Related]
37. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge. Li XY; Yang SF Water Res; 2007 Mar; 41(5):1022-30. PubMed ID: 16952388 [TBL] [Abstract][Full Text] [Related]
38. Role of extracellular exopolymers on biological phosphorus removal. Liu YN; Xue G; Yu SL; Zhao FB J Environ Sci (China); 2006; 18(4):670-4. PubMed ID: 17078544 [TBL] [Abstract][Full Text] [Related]
39. Effects of potassium ferrate on extracellular polymeric substances (EPS) and physicochemical properties of excess activated sludge. Ye F; Liu X; Li Y J Hazard Mater; 2012 Jan; 199-200():158-63. PubMed ID: 22104765 [TBL] [Abstract][Full Text] [Related]
40. Effects of floc aluminum on activated sludge characteristics and removal of 17-alpha-ethinylestradiol in wastewater systems. Park C; Fang Y; Murthy SN; Novak JT Water Res; 2010 Mar; 44(5):1335-40. PubMed ID: 19944440 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]