BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 23660014)

  • 1. Rapid and sensitive detection of maize chlorotic mottle virus using surface plasmon resonance-based biosensor.
    Zeng C; Huang X; Xu J; Li G; Ma J; Ji HF; Zhu S; Chen H
    Anal Biochem; 2013 Sep; 440(1):18-22. PubMed ID: 23660014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time TaqMan RT-PCR for detection of maize chlorotic mottle virus in maize seeds.
    Zhang Y; Zhao W; Li M; Chen H; Zhu S; Fan Z
    J Virol Methods; 2011 Jan; 171(1):292-4. PubMed ID: 21073900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous flow immunosensor for highly selective and real-time detection of sub-ppb levels of 2-hydroxybiphenyl by using surface plasmon resonance imaging.
    Gobi KV; Tanaka H; Shoyama Y; Miura N
    Biosens Bioelectron; 2004 Sep; 20(2):350-7. PubMed ID: 15308241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-step reverse transcription loop-mediated isothermal amplification for the detection of Maize chlorotic mottle virus in maize.
    Chen L; Jiao Z; Liu D; Liu X; Xia Z; Deng C; Zhou T; Fan Z
    J Virol Methods; 2017 Feb; 240():49-53. PubMed ID: 27899288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface plasmon resonance based immunosensor for serological diagnosis of dengue virus infection.
    Kumbhat S; Sharma K; Gehlot R; Solanki A; Joshi V
    J Pharm Biomed Anal; 2010 Jun; 52(2):255-9. PubMed ID: 20097030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete nucleotide sequence of a maize chlorotic mottle virus isolate from Nebraska.
    Stenger DC; French R
    Arch Virol; 2008; 153(5):995-7. PubMed ID: 18365127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface plasmon resonance biosensor for direct detection of antibodies against human growth hormone.
    Kausaite-Minkstimiene A; Ramanaviciene A; Ramanavicius A
    Analyst; 2009 Oct; 134(10):2051-7. PubMed ID: 19768212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitive and selective analysis of a wide concentration range of IGFBP7 using a surface plasmon resonance biosensor.
    Jang DH; Choi Y; Choi YS; Kim SM; Kwak H; Shin SH; Hong S
    Colloids Surf B Biointerfaces; 2014 Nov; 123():887-91. PubMed ID: 25466460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface plasmon resonance based immunosensor for the detection of the cancer biomarker carcinoembryonic antigen.
    Altintas Z; Uludag Y; Gurbuz Y; Tothill IE
    Talanta; 2011 Oct; 86():377-83. PubMed ID: 22063554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced wavelength modulation SPR biosensor based on gold nanorods for immunoglobulin detection.
    Zhang H; Song D; Gao S; Zhang H; Zhang J; Sun Y
    Talanta; 2013 Oct; 115():857-62. PubMed ID: 24054674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of microcystins in environmental samples using surface plasmon resonance biosensor.
    Hu C; Gan N; Chen Y; Bi L; Zhang X; Song L
    Talanta; 2009 Nov; 80(1):407-10. PubMed ID: 19782244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localized surface plasmon resonance biosensor integrated with microfluidic chip.
    Huang C; Bonroy K; Reekmans G; Laureyn W; Verhaegen K; De Vlaminck I; Lagae L; Borghs G
    Biomed Microdevices; 2009 Aug; 11(4):893-901. PubMed ID: 19353272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface plasmon resonance sensor for phosmet of agricultural products at the ppt detection level.
    Song Y; Liu M; Wang S
    J Agric Food Chem; 2013 Mar; 61(11):2625-30. PubMed ID: 23402473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings.
    Kim K; Kim DJ; Moon S; Kim D; Byun KM
    Nanotechnology; 2009 Aug; 20(31):315501. PubMed ID: 19597249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silver nanoparticles on a plastic platform for localized surface plasmon resonance biosensing.
    Fan M; Thompson M; Andrade ML; Brolo AG
    Anal Chem; 2010 Aug; 82(15):6350-2. PubMed ID: 20597465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic nanoparticle-enhanced biosensor based on grating-coupled surface plasmon resonance.
    Wang Y; Dostalek J; Knoll W
    Anal Chem; 2011 Aug; 83(16):6202-7. PubMed ID: 21711037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monoclonal antibody-based serological methods for maize chlorotic mottle virus detection in China.
    Wu JX; Wang Q; Liu H; Qian YJ; Xie Y; Zhou XP
    J Zhejiang Univ Sci B; 2013 Jul; 14(7):555-62. PubMed ID: 23825140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifunctional au nanoparticle dendrimer-based surface plasmon resonance biosensor and its application for improved insulin detection.
    Frasconi M; Tortolini C; Botrè F; Mazzei F
    Anal Chem; 2010 Sep; 82(17):7335-42. PubMed ID: 20698498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recombinase polymerase amplification assay for rapid detection of maize chlorotic mottle virus in maize.
    Jiao Y; Jiang J; An M; Xia Z; Wu Y
    Arch Virol; 2019 Oct; 164(10):2581-2584. PubMed ID: 31359148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative surface plasmon resonance and enzyme-linked immunosorbent assay characterisation of a monoclonal antibody with N-acyl homoserine lactones.
    Wöllner K; Chen X; Kremmer E; Krämer PM
    Anal Chim Acta; 2010 Dec; 683(1):113-8. PubMed ID: 21094389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.