These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 23660072)

  • 1. Comparative decomposition kinetics of neutral monosaccharides by microwave and induction heating treatments.
    Tsubaki S; Oono K; Onda A; Yanagisawa K; Azuma J
    Carbohydr Res; 2013 Jun; 375():1-4. PubMed ID: 23660072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamics of the interaction of RbCl with some monosaccharides (D-glucose, D-galactose, D-xylose, and D-arabinose) in aqueous solutions at 298.15K.
    Jiang Y; Hu M; Li S; Wang J; Zhuo K
    Carbohydr Res; 2006 Feb; 341(2):262-9. PubMed ID: 16330007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of microwave oven and convection oven for acid hydrolysis of dietary fiber polysaccharides.
    Li BW
    J AOAC Int; 1998; 81(6):1277-80. PubMed ID: 9850590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of microwave oven heating for prediction of drug-excipient compatibilities and accelerated stability studies.
    Schou-Pedersen AM; Østergaard J; Cornett C; Hansen SH
    Int J Pharm; 2015 May; 485(1-2):97-107. PubMed ID: 25746946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave assisted extraction-solid phase extraction for high-efficient and rapid analysis of monosaccharides in plants.
    Zhang Y; Li HF; Ma Y; Jin Y; Kong G; Lin JM
    Talanta; 2014 Nov; 129():404-10. PubMed ID: 25127612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics study on conventional and microwave pyrolysis of moso bamboo.
    Dong Q; Xiong Y
    Bioresour Technol; 2014 Nov; 171():127-31. PubMed ID: 25194260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal destruction of folacin in microwave and conventional heating.
    Cooper RG; Chen TS; King MA
    J Am Diet Assoc; 1978 Oct; 73(4):406-10. PubMed ID: 701671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noncatalytic hydrolysis of guar gum under hydrothermal conditions.
    Miyazawa T; Funazukuri T
    Carbohydr Res; 2006 May; 341(7):870-7. PubMed ID: 16529730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterisation of "caramel-type" thermal decomposition products of selected monosaccharides including fructose, mannose, galactose, arabinose and ribose by advanced electrospray ionization mass spectrometry methods.
    Golon A; Kuhnert N
    Food Funct; 2013 Jul; 4(7):1040-50. PubMed ID: 23529212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic resolution of rac-1-phenylethanol with immobilized lipases: a critical comparison of microwave and conventional heating protocols.
    de Souza RO; Antunes OA; Kroutil W; Kappe CO
    J Org Chem; 2009 Aug; 74(16):6157-62. PubMed ID: 19601570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Furfural Synthesis from d-Xylose in the Presence of Sodium Chloride: Microwave versus Conventional Heating.
    Xiouras C; Radacsi N; Sturm G; Stefanidis GD
    ChemSusChem; 2016 Aug; 9(16):2159-66. PubMed ID: 27416892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production and recovery of monosaccharides from lignocellulose hot water extracts in a pulp mill biorefinery.
    Sainio T; Kallioinen M; Nakari O; Mänttäri M
    Bioresour Technol; 2013 May; 135():730-7. PubMed ID: 23069608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microwave-assisted hydrothermal extraction of non-structural carbohydrates and hemicelluloses from tobacco biomass.
    Yuan Y; Zou P; Zhou J; Geng Y; Fan J; Clark J; Li Y; Zhang C
    Carbohydr Polym; 2019 Nov; 223():115043. PubMed ID: 31426995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of heating rate, temperature and iron catalysis on the thermal behaviour and decomposition of 2-nitrobenzoyl chloride.
    Lever SD; Papadaki M
    J Hazard Mater; 2006 Mar; 130(1-2):76-87. PubMed ID: 16236442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of glycation in conventionally and microwave-heated ovalbumin by high resolution mass spectrometry.
    Wang H; Tu ZC; Liu GX; Liu CM; Huang XQ; Xiao H
    Food Chem; 2013 Nov; 141(2):985-91. PubMed ID: 23790877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The novel technique of microwave heating of infant formulas and human milk with direct temperature monitoring.
    Levchenko A; Lukoyanova O; Borovik T; Levchenko M; Sevostianov D; Sadchikov P
    J Biol Regul Homeost Agents; 2017; 31(2):353-357. PubMed ID: 28685536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aggregation behavior of a model ionic liquid surfactant in monosaccharide + water solutions.
    Chen Y; Zhao Y; Chen J; Zhuo K; Wang J
    J Colloid Interface Sci; 2011 Dec; 364(2):388-94. PubMed ID: 21925675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency Distribution in Domestic Microwave Ovens and Its Influence on Heating Pattern.
    Luan D; Wang Y; Tang J; Jain D
    J Food Sci; 2017 Feb; 82(2):429-436. PubMed ID: 27992653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic study of the thermal stability of tea catechins in aqueous systems using a microwave reactor.
    Wang R; Zhou W; Wen RA
    J Agric Food Chem; 2006 Aug; 54(16):5924-32. PubMed ID: 16881696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reliability of modern microwave ovens to safely heat intravenous fluids for resuscitation.
    Delaney A
    Emerg Med (Fremantle); 2001 Jun; 13(2):181-5. PubMed ID: 11482855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.