These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 23660350)

  • 1. Plant venation: from succulence to succulents.
    Griffiths H
    Curr Biol; 2013 May; 23(9):R340-1. PubMed ID: 23660350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Succulent plants.
    Griffiths H; Males J
    Curr Biol; 2017 Sep; 27(17):R890-R896. PubMed ID: 28898660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repeated origin of three-dimensional leaf venation releases constraints on the evolution of succulence in plants.
    Ogburn RM; Edwards EJ
    Curr Biol; 2013 Apr; 23(8):722-6. PubMed ID: 23583553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secrets of succulence.
    Males J
    J Exp Bot; 2017 Apr; 68(9):2121-2134. PubMed ID: 28369497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leaf palmate venation and vascular redundancy confer tolerance of hydraulic disruption.
    Sack L; Dietrich EM; Streeter CM; Sánchez-Gómez D; Holbrook NM
    Proc Natl Acad Sci U S A; 2008 Feb; 105(5):1567-72. PubMed ID: 18227511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Evolution of succulent Senecioneae (Asteraceae) of Southern Africa].
    Timonin AK; Ozerova LV; Shantser IA
    Zh Obshch Biol; 2014; 75(1):25-37. PubMed ID: 25486795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of a unique anatomical precision in angiosperm leaf venation lifts constraints on vascular plant ecology.
    Zwieniecki MA; Boyce CK
    Proc Biol Sci; 2014 Mar; 281(1779):20132829. PubMed ID: 24478301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallel evolution of angiosperm-like venation in Peltaspermales: a reinvestigation of Furcula.
    Coiro M; McLoughlin S; Steinthorsdottir M; Vajda V; Fabrikant D; Seyfullah LJ
    New Phytol; 2024 Jun; 242(6):2845-2856. PubMed ID: 38623034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydraulic tuning of vein cell microstructure in the evolution of angiosperm venation networks.
    Feild TS; Brodribb TJ
    New Phytol; 2013 Aug; 199(3):720-6. PubMed ID: 23668223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three keys to the radiation of angiosperms into freezing environments.
    Zanne AE; Tank DC; Cornwell WK; Eastman JM; Smith SA; FitzJohn RG; McGlinn DJ; O'Meara BC; Moles AT; Reich PB; Royer DL; Soltis DE; Stevens PF; Westoby M; Wright IJ; Aarssen L; Bertin RI; Calaminus A; Govaerts R; Hemmings F; Leishman MR; Oleksyn J; Soltis PS; Swenson NG; Warman L; Beaulieu JM
    Nature; 2014 Feb; 506(7486):89-92. PubMed ID: 24362564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights on the evolution of plant succulence from a remarkable radiation in Madagascar (Euphorbia).
    Evans M; Aubriot X; Hearn D; Lanciaux M; Lavergne S; Cruaud C; Lowry PP; Haevermans T
    Syst Biol; 2014 Sep; 63(5):697-711. PubMed ID: 24852061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leaf evolution in Southern Hemisphere conifers tracks the angiosperm ecological radiation.
    Biffin E; Brodribb TJ; Hill RS; Thomas P; Lowe AJ
    Proc Biol Sci; 2012 Jan; 279(1727):341-8. PubMed ID: 21653584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leaf venation network architecture coordinates functional trade-offs across vein spatial scales: evidence for multiple alternative designs.
    Matos IS; Boakye M; Niewiadomski I; Antonio M; Carlos S; Johnson BC; Chu A; Echevarria A; Fontao A; Garcia L; Kalantar D; Madhavan S; Mann J; McDonough S; Rohde J; Scudder M; Sharma S; To J; Tomaka C; Vu B; Yokota N; Forbes H; Fricker M; Blonder BW
    New Phytol; 2024 Oct; 244(2):407-425. PubMed ID: 39180209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topological Phenotypes Constitute a New Dimension in the Phenotypic Space of Leaf Venation Networks.
    Ronellenfitsch H; Lasser J; Daly DC; Katifori E
    PLoS Comput Biol; 2015 Dec; 11(12):e1004680. PubMed ID: 26700471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Causes of ecological gradients in leaf margin entirety: Evaluating the roles of biomechanics, hydraulics, vein geometry, and bud packing.
    Givnish TJ; Kriebel R
    Am J Bot; 2017 Mar; 104(3):354-366. PubMed ID: 28232316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inferring climate from angiosperm leaf venation networks.
    Blonder B; Enquist BJ
    New Phytol; 2014 Oct; 204(1):116-126. PubMed ID: 24725225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative venation costs of monocotyledon and dicotyledon species in the eastern Colorado steppe.
    Drobnitch ST; Kray JA; Gleason SM; Ocheltree TW
    Planta; 2024 May; 260(1):2. PubMed ID: 38761315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmentally based scaling of leaf venation architecture explains global ecological patterns.
    Sack L; Scoffoni C; McKown AD; Frole K; Rawls M; Havran JC; Tran H; Tran T
    Nat Commun; 2012 May; 3():837. PubMed ID: 22588299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental regulation of leaf venation patterns: monocot versus eudicots and the role of auxin.
    Perico C; Tan S; Langdale JA
    New Phytol; 2022 May; 234(3):783-803. PubMed ID: 35020214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future.
    Sack L; Scoffoni C
    New Phytol; 2013 Jun; 198(4):983-1000. PubMed ID: 23600478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.