These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 23660626)
1. Application of mass spectrometric techniques to delineate the modes-of-action of anticancer metallodrugs. Hartinger CG; Groessl M; Meier SM; Casini A; Dyson PJ Chem Soc Rev; 2013 Jul; 42(14):6186-99. PubMed ID: 23660626 [TBL] [Abstract][Full Text] [Related]
2. Biophysical characterisation of adducts formed between anticancer metallodrugs and selected proteins: new insights from X-ray diffraction and mass spectrometry studies. Casini A; Guerri A; Gabbiani C; Messori L J Inorg Biochem; 2008; 102(5-6):995-1006. PubMed ID: 18289690 [TBL] [Abstract][Full Text] [Related]
3. Chemo-genetic optimization of DNA recognition by metallodrugs using a presenter-protein strategy. Zimbron JM; Sardo A; Heinisch T; Wohlschlager T; Gradinaru J; Massa C; Schirmer T; Creus M; Ward TR Chemistry; 2010 Nov; 16(43):12883-9. PubMed ID: 20878805 [TBL] [Abstract][Full Text] [Related]
4. Gold(III) compounds as anticancer agents: relevance of gold-protein interactions for their mechanism of action. Casini A; Hartinger C; Gabbiani C; Mini E; Dyson PJ; Keppler BK; Messori L J Inorg Biochem; 2008 Mar; 102(3):564-75. PubMed ID: 18177942 [TBL] [Abstract][Full Text] [Related]
5. Targeted therapy vs. DNA-adduct formation-guided design: thoughts about the future of metal-based anticancer drugs. Sava G; Jaouen G; Hillard EA; Bergamo A Dalton Trans; 2012 Jul; 41(27):8226-34. PubMed ID: 22614531 [TBL] [Abstract][Full Text] [Related]
6. Characterization of platinum anticancer drug protein-binding sites using a top-down mass spectrometric approach. Hartinger CG; Tsybin YO; Fuchser J; Dyson PJ Inorg Chem; 2008 Jan; 47(1):17-9. PubMed ID: 18067289 [TBL] [Abstract][Full Text] [Related]
7. CE in anticancer metallodrug research--an update. Hartinger CG; Keppler BK Electrophoresis; 2007 Oct; 28(19):3436-46. PubMed ID: 17847132 [TBL] [Abstract][Full Text] [Related]
8. Elucidation of the Mechanism of Action for Metal Based Anticancer Drugs by Mass Spectrometry-Based Quantitative Proteomics. Jia S; Wang R; Wu K; Jiang H; Du Z Molecules; 2019 Feb; 24(3):. PubMed ID: 30736320 [TBL] [Abstract][Full Text] [Related]
9. Protein Metalation by Anticancer Metallodrugs: A Joint ESI MS and XRD Investigative Strategy. Merlino A; Marzo T; Messori L Chemistry; 2017 May; 23(29):6942-6947. PubMed ID: 28071831 [TBL] [Abstract][Full Text] [Related]
10. DNA interactions of monofunctional organometallic osmium(II) antitumor complexes in cell-free media. Kostrhunova H; Florian J; Novakova O; Peacock AF; Sadler PJ; Brabec V J Med Chem; 2008 Jun; 51(12):3635-43. PubMed ID: 18494458 [TBL] [Abstract][Full Text] [Related]
11. DNA binding by antitumor trans-[PtCl2(NH3)(thiazole)]. Protein recognition and nucleotide excision repair of monofunctional adducts. Kasparkova J; Novakova O; Farrell N; Brabec V Biochemistry; 2003 Jan; 42(3):792-800. PubMed ID: 12534292 [TBL] [Abstract][Full Text] [Related]
12. Novel metal-based anticancer drugs: a new challenge in drug delivery. Lainé AL; Passirani C Curr Opin Pharmacol; 2012 Aug; 12(4):420-6. PubMed ID: 22609113 [TBL] [Abstract][Full Text] [Related]
13. CZE-ICP-MS as a tool for studying the hydrolysis of ruthenium anticancer drug candidates and their reactivity towards the DNA model compound dGMP. Groessl M; Hartinger CG; Dyson PJ; Keppler BK J Inorg Biochem; 2008; 102(5-6):1060-5. PubMed ID: 18222004 [TBL] [Abstract][Full Text] [Related]
14. Next-generation anticancer metallodrugs. Komeda S; Casini A Curr Top Med Chem; 2012; 12(3):219-35. PubMed ID: 22236158 [TBL] [Abstract][Full Text] [Related]
15. Advances of CE-ICP-MS in speciation analysis related to metalloproteomics of anticancer drugs. Timerbaev AR; Pawlak K; Aleksenko SS; Foteeva LS; Matczuk M; Jarosz M Talanta; 2012 Dec; 102():164-70. PubMed ID: 23182589 [TBL] [Abstract][Full Text] [Related]
16. Platinum-DNA interactions and subsequent cellular processes controlling sensitivity to anticancer platinum complexes. Ahmad S Chem Biodivers; 2010 Mar; 7(3):543-66. PubMed ID: 20232326 [TBL] [Abstract][Full Text] [Related]
17. The synergy of elemental and biomolecular mass spectrometry: new analytical strategies in life sciences. Becker JS; Jakubowski N Chem Soc Rev; 2009 Jul; 38(7):1969-83. PubMed ID: 19551177 [TBL] [Abstract][Full Text] [Related]
18. Insights into the molecular mechanisms of protein platination from a case study: the reaction of anticancer platinum(II) iminoethers with horse heart cytochrome c. Casini A; Gabbiani C; Mastrobuoni G; Pellicani RZ; Intini FP; Arnesano F; Natile G; Moneti G; Francese S; Messori L Biochemistry; 2007 Oct; 46(43):12220-30. PubMed ID: 17924668 [TBL] [Abstract][Full Text] [Related]
19. Anticancer metallodrug research analytically painting the "omics" picture--current developments and future trends. Groessl M; Hartinger CG Anal Bioanal Chem; 2013 Feb; 405(6):1791-808. PubMed ID: 23070042 [TBL] [Abstract][Full Text] [Related]
20. Capillary electrophoresis hyphenated to inductively coupled plasma-mass spectrometry: a novel approach for the analysis of anticancer metallodrugs in human serum and plasma. Groessl M; Hartinger CG; Polec-Pawlak K; Jarosz M; Keppler BK Electrophoresis; 2008 May; 29(10):2224-32. PubMed ID: 18512673 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]