These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 23660700)
1. Electron microscopy and composition of raw acorn starch in relation to in vivo starch digestibility. Cappai MG; Alesso GA; Nieddu G; Sanna M; Pinna W Food Funct; 2013 Jun; 4(6):917-22. PubMed ID: 23660700 [TBL] [Abstract][Full Text] [Related]
2. Raw hulled shredded acorns from Downy Oak (Quercus pubescens) in the diet of pigs: effects on digestibility and faeces characteristics. Cappai MG; Wolf P; Rust P; Pinna W; Kamphues J J Anim Physiol Anim Nutr (Berl); 2013 May; 97 Suppl 1():1-5. PubMed ID: 23639011 [TBL] [Abstract][Full Text] [Related]
3. Nutrient composition and starch characteristics of Quercus glandulifera Bl. seeds from China. Li S; Zhou Y; Liu M; Zhang Y; Cao S Food Chem; 2015 Oct; 185():371-6. PubMed ID: 25952881 [TBL] [Abstract][Full Text] [Related]
4. Effect of drying temperatures on starch-related functional and thermal properties of acorn flours. Correia PR; Beirão-da-Costa ML J Food Sci; 2011 Mar; 76(2):E196-202. PubMed ID: 21535759 [TBL] [Abstract][Full Text] [Related]
5. Remobilization of acorn nitrogen for seedling growth in holm oak (Quercus ilex), cultivated with contrasting nutrient availability. Villar-Salvador P; Heredia N; Millard P Tree Physiol; 2010 Feb; 30(2):257-63. PubMed ID: 20022863 [TBL] [Abstract][Full Text] [Related]
6. Chemical composition and starch digestibility in flours from Polish processed legume seeds. Piecyk M; Wołosiak R; Drużynska B; Worobiej E Food Chem; 2012 Dec; 135(3):1057-64. PubMed ID: 22953824 [TBL] [Abstract][Full Text] [Related]
7. Acorn selection by the wood mouse Apodemus sylvaticus: a semi-controlled experiment in a Mediterranean environment. Rosalino LM; Nóbrega F; Santos-Reis M; Teixeira G; Rebelo R Zoolog Sci; 2013 Sep; 30(9):724-30. PubMed ID: 24004078 [TBL] [Abstract][Full Text] [Related]
8. Studies of variability in Holm oak (Quercus ilex subsp. ballota [Desf.] Samp.) through acorn protein profile analysis. Valero Galván J; Valledor L; Navarro Cerrillo RM; Gil Pelegrín E; Jorrín-Novo JV J Proteomics; 2011 Aug; 74(8):1244-55. PubMed ID: 21605712 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the cork oak transcriptome dynamics during acorn development. Miguel A; de Vega-Bartol J; Marum L; Chaves I; Santo T; Leitão J; Varela MC; Miguel CM BMC Plant Biol; 2015 Jun; 15():158. PubMed ID: 26109289 [TBL] [Abstract][Full Text] [Related]
10. Variation in seed traits among Mediterranean oaks in Tunisia and their ecological significance. Amimi N; Dussert S; Vaissayre V; Ghouil H; Doulbeau S; Costantini C; Ammari Y; Joët T Ann Bot; 2020 May; 125(6):891-904. PubMed ID: 31904087 [TBL] [Abstract][Full Text] [Related]
11. Relation of ramet size to acorn production in five oak species of xeric upland habitats in south-central Florida. Abrahamson WG; Layne JN Am J Bot; 2002 Jan; 89(1):124-31. PubMed ID: 21669720 [TBL] [Abstract][Full Text] [Related]
12. Morphology, associated protein analysis, and identification of 58-kDa starch synthase in mungbean (Vigna radiata L. cv. KPS1) starch granule preparations. Ko YT; Dong YL; Hsieh YF; Kuo JC J Agric Food Chem; 2009 May; 57(10):4426-32. PubMed ID: 19371027 [TBL] [Abstract][Full Text] [Related]
13. Structure and properties of Quercus robur acorn starch extracted by pulsed electric field technology. Castro LMG; Caço AI; Pereira CF; Sousa SC; Alexandre EMC; Saraiva JA; Pintado M Int J Biol Macromol; 2024 Mar; 260(Pt 2):129328. PubMed ID: 38242403 [TBL] [Abstract][Full Text] [Related]
14. The coexistence of acorns with different maturation patterns explains acorn production variability in cork oak. Pons J; Pausas JG Oecologia; 2012 Jul; 169(3):723-31. PubMed ID: 22246473 [TBL] [Abstract][Full Text] [Related]
15. One acorn produces two seedlings in Chinese cork oak Xiang J; Li X; Yi X Plant Signal Behav; 2019; 14(10):e1654817. PubMed ID: 31436128 [TBL] [Abstract][Full Text] [Related]
16. Mechanism and enzymatic contribution to in vitro test method of digestion for maize starches differing in amylose content. Brewer LR; Cai L; Shi YC J Agric Food Chem; 2012 May; 60(17):4379-87. PubMed ID: 22480190 [TBL] [Abstract][Full Text] [Related]
17. Phenolic compounds and fatty acids from acorns (Quercus spp.), the main dietary constituent of free-ranged Iberian pigs. Cantos E; Espín JC; López-Bote C; de la Hoz L; Ordóñez JA; Tomás-Barberán FA J Agric Food Chem; 2003 Oct; 51(21):6248-55. PubMed ID: 14518951 [TBL] [Abstract][Full Text] [Related]
18. Phytochemical composition and variability in Quercus ilex acorn morphotypes as determined by NIRS and MS-based approaches. López-Hidalgo C; Trigueros M; Menéndez M; Jorrin-Novo JV Food Chem; 2021 Feb; 338():127803. PubMed ID: 32822899 [TBL] [Abstract][Full Text] [Related]
19. Acorn ( Akcan T; Gökçe R; Asensio M; Estévez M; Morcuende D J Food Sci Technol; 2017 Sep; 54(10):3050-3057. PubMed ID: 28974789 [TBL] [Abstract][Full Text] [Related]
20. The importance of amylose and amylopectin fine structures for starch digestibility in cooked rice grains. Syahariza ZA; Sar S; Hasjim J; Tizzotti MJ; Gilbert RG Food Chem; 2013 Jan; 136(2):742-9. PubMed ID: 23122122 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]