These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 23660988)

  • 1. Intramolecular hydrogen-bonding in aqueous carbohydrates as a cause or consequence of conformational preferences: a molecular dynamics study of cellobiose stereoisomers.
    Wang D; Ámundadóttir ML; van Gunsteren WF; Hünenberger PH
    Eur Biophys J; 2013 Jul; 42(7):521-37. PubMed ID: 23660988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational properties of glucose-based disaccharides investigated using molecular dynamics simulations with local elevation umbrella sampling.
    Perić-Hassler L; Hansen HS; Baron R; Hünenberger PH
    Carbohydr Res; 2010 Aug; 345(12):1781-801. PubMed ID: 20576257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational properties of methyl β-maltoside and methyl α- and β-cellobioside disaccharides.
    Hatcher E; Säwén E; Widmalm G; MacKerell AD
    J Phys Chem B; 2011 Jan; 115(3):597-608. PubMed ID: 21158455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformation, dynamics, solvation and relative stabilities of selected beta-hexopyranoses in water: a molecular dynamics study with the GROMOS 45A4 force field.
    Kräutler V; Müller M; Hünenberger PH
    Carbohydr Res; 2007 Oct; 342(14):2097-124. PubMed ID: 17573054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A DFT/ab initio study of hydrogen bonding and conformational preference in model cellobiose analogs using B3LYP/6-311++G**.
    Strati GL; Willett JL; Momany FA
    Carbohydr Res; 2002 Nov; 337(20):1851-9. PubMed ID: 12431886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inter-residual Hydrogen Bonding in Carbohydrates Unraveled by NMR Spectroscopy and Molecular Dynamics Simulations.
    Rönnols J; Engström O; Schnupf U; Säwén E; Brady JW; Widmalm G
    Chembiochem; 2019 Oct; 20(19):2519-2528. PubMed ID: 31066963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidating the conformational energetics of glucose and cellobiose in ionic liquids.
    Bharadwaj VS; Schutt TC; Ashurst TC; Maupin CM
    Phys Chem Chem Phys; 2015 Apr; 17(16):10668-78. PubMed ID: 25806620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbohydrate intramolecular hydrogen bonding cooperativity and its effect on water structure.
    Dashnau JL; Sharp KA; Vanderkooi JM
    J Phys Chem B; 2005 Dec; 109(50):24152-9. PubMed ID: 16375407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isotopic hydration of cellobiose: vibrational spectroscopy and dynamical simulations.
    Pincu M; Cocinero EJ; Mayorkas N; Brauer B; Davis BG; Gerber RB; Simons JP
    J Phys Chem A; 2011 Sep; 115(34):9498-509. PubMed ID: 21631124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DFTMD studies of β-cellobiose: conformational preference using implicit solvent.
    Momany FA; Schnupf U
    Carbohydr Res; 2011 Apr; 346(5):619-30. PubMed ID: 21333280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 1H-NMR and MD study of intramolecular hydrogen bonds in methyl beta-cellobioside.
    Leeflang BR; Vliegenthart JF; Kroon-Batenburg LM; van Eijck BP; Kroon J
    Carbohydr Res; 1992 Jun; 230(1):41-61. PubMed ID: 1511454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of glycosidic linkage on the solution conformational entropy of gluco- and mannobioses.
    Morris MJ; Striegel AM
    Carbohydr Res; 2014 Oct; 398():31-5. PubMed ID: 25240178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational and dynamical properties of disaccharides in water: a molecular dynamics study.
    Pereira CS; Kony D; Baron R; Müller M; van Gunsteren WF; Hünenberger PH
    Biophys J; 2006 Jun; 90(12):4337-44. PubMed ID: 16581848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural evidence for inter-residue hydrogen bonding observed for cellobiose in aqueous solution.
    O'Dell WB; Baker DC; McLain SE
    PLoS One; 2012; 7(10):e45311. PubMed ID: 23056199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulations of a guaiacyl beta-O-4 lignin model compound: examination of intramolecular hydrogen bonding and conformational flexibility.
    Besombes S; Mazeau K
    Biopolymers; 2004 Feb; 73(3):301-15. PubMed ID: 14755566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamics of helix formation in small peptides of varying length in vacuo, in implicit solvent, and in explicit solvent.
    Wang X; Deng B; Sun Z
    J Mol Model; 2018 Dec; 25(1):3. PubMed ID: 30542771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Van der Waals versus hydrogen-bonding forces in a crystalline analog of cellotetraose: cyclohexyl 4'-O-cyclohexyl beta-D-cellobioside cyclohexane solvate.
    Yoneda Y; Mereiter K; Jaeger C; Brecker L; Kosma P; Rosenau T; French A
    J Am Chem Soc; 2008 Dec; 130(49):16678-90. PubMed ID: 19554694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of solvent and intramolecular hydrogen bonding on the conformational properties of o-linked glycopeptides.
    Mallajosyula SS; MacKerell AD
    J Phys Chem B; 2011 Sep; 115(38):11215-29. PubMed ID: 21823626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical study of the gauche-trans equilibrium with and without an intramolecular hydrogen bond for +H3NCH2CH2X systems (X = OH, NH2, COO-) in solution.
    Nagy PI
    Phys Chem Chem Phys; 2012 Oct; 14(40):13955-62. PubMed ID: 22977886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The crystal structure of the alpha-cellobiose.2 NaI.2 H(2)O complex in the context of related structures and conformational analysis.
    Peralta-Inga Z; Johnson GP; Dowd MK; Rendleman JA; Stevens ED; French AD
    Carbohydr Res; 2002 Apr; 337(9):851-61. PubMed ID: 11996839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.