BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 23660998)

  • 1. Assessment of β-carotene content, cell physiology and morphology of the yellow yeast Rhodotorula glutinis mutant 400A15 using flow cytometry.
    Cutzu R; Clemente A; Reis A; Nobre B; Mannazzu I; Roseiro J; Lopes da Silva T
    J Ind Microbiol Biotechnol; 2013 Aug; 40(8):865-75. PubMed ID: 23660998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of beta-carotene by a mutant of Rhodotorula glutinis.
    Bhosale PB; Gadre RV
    Appl Microbiol Biotechnol; 2001 May; 55(4):423-7. PubMed ID: 11398921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. beta-Carotene production in sugarcane molasses by a Rhodotorula glutinis mutant.
    Bhosale P; Gadre RV
    J Ind Microbiol Biotechnol; 2001 Jun; 26(6):327-32. PubMed ID: 11571614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of beta-carotene-enriched rice bran using solid-state fermentation of Rhodotorula glutinis.
    Roadjanakamolson M; Suntornsuk W
    J Microbiol Biotechnol; 2010 Mar; 20(3):525-31. PubMed ID: 20372023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manipulation of temperature and illumination conditions for enhanced beta-carotene production by mutant 32 of Rhodotorula glutinis.
    Bhosale P; Gadre RV
    Lett Appl Microbiol; 2002; 34(5):349-53. PubMed ID: 11967057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From crude glycerol to carotenoids by using a Rhodotorula glutinis mutant.
    Cutzu R; Coi A; Rosso F; Bardi L; Ciani M; Budroni M; Zara G; Zara S; Mannazzu I
    World J Microbiol Biotechnol; 2013 Jun; 29(6):1009-17. PubMed ID: 23355137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of beta-carotene in spray dried preparation of Rhodotorula glutinis mutant 32.
    Bhosale P; Jogdand VV; Gadre RV
    J Appl Microbiol; 2003; 95(3):584-90. PubMed ID: 12911707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of carotenoid production from hyper-producing Rhodotorula glutinis mutant 32 by a factorial approach.
    Bhosale P; Gadre RV
    Lett Appl Microbiol; 2001 Jul; 33(1):12-6. PubMed ID: 11442807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of high hydrostatic pressure on the growth and beta-carotene production of Rhodotorula glutinis.
    Wang SL; Chen DJ; Deng BW; Wu XZ
    Yeast; 2008 Apr; 25(4):251-7. PubMed ID: 18338316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of beta-carotene production by Rhodotorula glutinis using high hydrostatic pressure and response surface methodology.
    Wang SL; Sun JS; Han BZ; Wu XZ
    J Food Sci; 2007 Oct; 72(8):M325-9. PubMed ID: 17995613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of beta-carotene production by Rhodotorula glutinis DM28 in fermented radish brine.
    Malisorn C; Suntornsuk W
    Bioresour Technol; 2008 May; 99(7):2281-7. PubMed ID: 17587568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth of oleaginous Rhodotorula glutinis in an internal-loop airlift bioreactor by using lignocellulosic biomass hydrolysate as the carbon source.
    Yen HW; Chang JT
    J Biosci Bioeng; 2015 May; 119(5):580-4. PubMed ID: 25454603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of torularhodin, torulene, and β-carotene by Rhodotorula yeasts.
    Moliné M; Libkind D; van Broock M
    Methods Mol Biol; 2012; 898():275-83. PubMed ID: 22711133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering the oleaginous red yeast Rhodotorula glutinis for simultaneous β-carotene and cellulase production.
    Pi HW; Anandharaj M; Kao YY; Lin YJ; Chang JJ; Li WH
    Sci Rep; 2018 Jul; 8(1):10850. PubMed ID: 30022171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of beta-carotene by a Rhodotorula glutinis mutant in sea water medium.
    Bhosale P; Gadre RV
    Bioresour Technol; 2001 Jan; 76(1):53-5. PubMed ID: 11315810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Batch and fed-batch carotenoid production by Rhodotorula glutinis-Debaryomyces castellii co-cultures in corn syrup.
    Buzzini P
    J Appl Microbiol; 2001 May; 90(5):843-7. PubMed ID: 11348447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid and carotenoid production by Rhodotorula glutinis under irradiation/high-temperature and dark/low-temperature cultivation.
    Zhang Z; Zhang X; Tan T
    Bioresour Technol; 2014 Apr; 157():149-53. PubMed ID: 24549236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilizing microalgal hydrolysate from dairy wastewater-grown Chlorella sorokiniana SU-1 as sustainable feedstock for polyhydroxybutyrate and β-carotene production by engineered Rhodotorula glutinis #100-29.
    Kusmayadi A; Huang CY; Leong YK; Yen HW; Lee DJ; Chang JS
    Bioresour Technol; 2023 Sep; 384():129277. PubMed ID: 37290703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. β-Carotene production from sugarcane molasses by a newly isolated Rhodotorula toruloides L/24-26-1.
    Ochoa-Viñals N; Alonso-Estrada D; Faife-Pérez E; Chen Z; Michelena-Alvarez G; Martínez-Hernández JL; García-Cruz A; Ilina A
    Arch Microbiol; 2024 May; 206(6):245. PubMed ID: 38702537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of different C/N ratios on carotenoid and lipid production by Rhodotorula glutinis.
    Braunwald T; Schwemmlein L; Graeff-Hönninger S; French WT; Hernandez R; Holmes WE; Claupein W
    Appl Microbiol Biotechnol; 2013 Jul; 97(14):6581-8. PubMed ID: 23728238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.