These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 23661135)

  • 1. Transducer characterization by sound field measurements.
    Lenz M; Gust N; Wolf M; Kühnicke E; Rodig T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 May; 60(5):998-1009. PubMed ID: 23661135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of lead zirconate titanate ceramics for use in miniature high-frequency (20-80 MHz) transducers.
    Foster FS; Ryan LK; Turnbull DH
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(5):446-53. PubMed ID: 18267606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and characterization of transducer elements in two-dimensional arrays for medical ultrasound imaging.
    Turnbull DH; Foster FS
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(4):464-75. PubMed ID: 18267657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of acoustic impedances of multi matching layers for narrowband ultrasonic airborne transducers at frequencies <2.5 MHz - Application of a genetic algorithm.
    Saffar S; Abdullah A
    Ultrasonics; 2012 Jan; 52(1):169-85. PubMed ID: 21893329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New symmetric reflector ultrasonic transducers (SRUT).
    Toda M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Oct; 56(10):2311-9. PubMed ID: 19942517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and evaluation of a single-element Bi0.5Na0.5TiO3-based ultrasonic transducer.
    Hejazi MM; Jadidian B; Safari A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Aug; 59(8):1840-7. PubMed ID: 22899131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extending the frequency range of the National Physical Laboratory primary standard laser interferometer for hydrophone calibrations to 80 MHz.
    Esward TJ; Robinson SP
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(3):737-44. PubMed ID: 18238474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of the sound velocity in fluids using the echo signals from scattering particles.
    Lenz M; Bock M; Kühnicke E; Pal J; Cramer A
    Ultrasonics; 2012 Jan; 52(1):117-24. PubMed ID: 21824636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and characterization of annular thickness mode piezoelectric micro ultrasonic transducers.
    Dorey RA; Dauchy F; Wang D; Berriet R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Dec; 54(12):2462-8. PubMed ID: 18276538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of broadband poly(vinylidene difluoride-trifluroethylene) line-focus ultrasonic transducers for surface acoustic wave measurements of anisotropy of a (100) silicon wafer.
    Lu Y; He C; Song G; Wu B; Chung CH; Lee YC
    Ultrasonics; 2014 Jan; 54(1):296-304. PubMed ID: 23899826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ring-Focusing Fresnel Acoustic Lens for Long Depth-of-Focus Focused Ultrasound with Multiple Trapping Zones.
    Tang Y; Kim ES
    J Microelectromech Syst; 2020 Oct; 29(5):692-698. PubMed ID: 33746473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect on High-Intensity Fields of a Tough Hydrophone With Hydrothermal PZT Thick-Film Vibrator and Titanium Front Layer.
    Okada N; Takeuchi S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jul; 64(7):1120-1126. PubMed ID: 28436860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sound field calculations for an ultrasonic linear phased array with a spherical liquid lens.
    Yoon YJ; Benkeser PJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(2):268-72. PubMed ID: 18263146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A single-element transducer with nonuniform thickness for high-frequency broadband applications.
    Liu JH; Chen SY; Li PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):379-86. PubMed ID: 19251525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of high-frequency, single-element focused transducers with wire target and hydrophone.
    Huang B; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Sep; 52(9):1608-12. PubMed ID: 16285460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and fabrication of a 40-MHz annular array transducer.
    Ketterling JA; Aristizábal O; Turnbull DH; Lizzi FL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Apr; 52(4):672-81. PubMed ID: 16060516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lead zirconate titanate/poly(vinylidene fluoride-trifluoroethylene) 1-3 composites for ultrasonic transducer applications.
    Kwok KW; Chan HC; Choy CL
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(3):626-37. PubMed ID: 18238463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-overtone self-focusing acoustic transducers for high-frequency ultrasonic Doppler.
    Zhu J; Lee C; Kim ES; Wu D; Hu C; Zhou Q; Shung KK; Wang G; Yu H
    Ultrasonics; 2010 May; 50(6):544-7. PubMed ID: 20206371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generating an Adjustable Focused Field With an Annular Shape Using a Cylindrical Acoustic Transducer Array.
    Yang X; Yin G; Tian Y; Guo J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Feb; 67(2):356-364. PubMed ID: 31562075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustical evaluation of a prototype sector-vortex phased-array applicator.
    Umemura S; Cain CA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(1):32-8. PubMed ID: 18263115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.