These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 23661137)

  • 41. Receive-Noise Analysis of Capacitive Micromachined Ultrasonic Transducers.
    Bozkurt A; Yaralioglu GG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Nov; 63(11):1980-1987. PubMed ID: 27824573
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Boundary Element Model for CMUT-Arrays Loaded by a Viscoelastic Medium.
    Hery M; Senegond N; Certon D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Apr; 67(4):779-788. PubMed ID: 31751236
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A nonlinear lumped model for ultrasound systems using CMUT arrays.
    Satir S; Degertekin FL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Oct; 62(10):1865-79. PubMed ID: 26470049
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Equivalent Circuit to Analyze the Transmitting Characteristics of a Cymbal Array.
    Shim H; Kim K; Seo H; Roh Y
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433342
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An Analytical Model for CMUTs with Square Multilayer Membranes Using the Ritz Method.
    Zhang W; Zhang H; Jin S; Zeng Z
    Micromachines (Basel); 2016 Mar; 7(4):. PubMed ID: 30407428
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Packaging and modular assembly of large-area and fine-pitch 2-D ultrasonic transducer arrays.
    Lin DS; Wodnicki R; Zhuang X; Woychik C; Thomenius KE; Fisher RA; Mills DM; Byun AJ; Burdick W; Khuri-Yakub P; Bonitz B; Davies T; Thomas G; Otto B; Töpper M; Fritzsch T; Ehrmann O
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jul; 60(7):1356-75. PubMed ID: 25004504
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Element shape design of 2-D CMUT arrays for reducing grating lobes.
    Bavaro V; Caliano G; Pappalardo M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):308-18. PubMed ID: 18334338
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Design of a MEMS discretized hyperbolic paraboloid geometry ultrasonic sensor microarray.
    Meloche M; Chowdhury S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1363-72. PubMed ID: 18599424
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Integration of 2D CMUT arrays with front-end electronics for volumetric ultrasound imaging.
    Wygant IO; Zhuang X; Yeh DT; Oralkan O; Sanli Ergun A; Karaman M; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):327-42. PubMed ID: 18334340
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Investigation on Design Theory and Performance Analysis of Vacuum Capacitive Micromachined Ultrasonic Transducer.
    Huang X; Wang H; Yu L
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577770
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Top orthogonal to bottom electrode (TOBE) 2-D CMUT arrays for 3-D photoacoustic imaging.
    Chee R; Sampaleanu A; Rishi D; Zemp R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Aug; 61(8):1393-5. PubMed ID: 25073146
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fast time-domain modeling of fluid-coupled cMUT cells: from the single cell to the 1-D linear array element.
    Sénégond N; Boulmé A; Plag C; Teston F; Certon D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jul; 60(7):1505-18. PubMed ID: 25004518
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Super-resolution imaging using multi- electrode CMUTs: theoretical design and simulation using point targets.
    You W; Cretu E; Rohling R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2295-309. PubMed ID: 24158286
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Design and Finite Element Simulation of a Novel 3D-CMUT Device for Simultaneous Sensing of In-Plane and Out-of-Plane Displacements of Ultrasonic Guided Waves.
    Zhang S; Lu W; Wang A; Hao G; Wang R; Yilmaz M
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960406
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A new regime for operating capacitive micromachined ultrasonic transducers.
    Bayram B; Haeggström E; Yaralioglu GG; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Sep; 50(9):1184-90. PubMed ID: 14561034
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An Analysis Method for Capacitive Micromachined Ultrasound Transducer (CMUT) Energy Conversion during Large Signal Operation.
    Pirouz A; Degertekin FL
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30791556
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electromechanical coupling factor of capacitive micromachined ultrasonic transducers.
    Caronti A; Carotenuto R; Pappalardo M
    J Acoust Soc Am; 2003 Jan; 113(1):279-88. PubMed ID: 12558266
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Medical imaging using capacitive micromachined ultrasonic transducer arrays.
    Johnson J; Oralkan O; Demirci U; Ergun S; Karaman M; Khuri-Yakub P
    Ultrasonics; 2002 May; 40(1-8):471-6. PubMed ID: 12159985
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An Integrated Front-end Circuit Board for Air-Coupled CMUT Burst-Echo Imaging.
    Ye L; Li J; Zhang H; Liang D; Wang Z
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33126557
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Hybrid Boundary Element Model for Simulation and Optimization of Large Piezoelectric Micromachined Ultrasonic Transducer Arrays.
    Shieh B; Sabra KG; Degertekin FL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jan; 65(1):50-59. PubMed ID: 29283347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.